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Preface

Several natural L” spaces of analytic functions have been widely studied in the past
few decades, including Hardy spaces, Bergman spaces, and Fock spaces. The terms
“Hardy spaces” and “Bergman spaces” are by now standard and well established.
But the term “Fock spaces” is a different story. I am aware of at least two other
terms that refer to the same class of spaces: Bargmann spaces and Segal-Bargmann
spaces. There is no particular reason, other than personal tradition, why I use “Fock
spaces” instead of the other variants. I have not done and do not intend to do any
research in order to justify one choice over the others.

Numerous excellent books now exist on the subject of Hardy spaces. Several
books about Bergman spaces, including some of my own, have also appeared in the
past few decades. But there has been no book on the market concerning the Fock
spaces. The purpose of this book is to fill that vacuum. There seems to be an honest
need for such a book, especially when many results are by now complete. It is at
least desirable to have the most important results and techniques summarized in one
book, so that newcomers, especially graduate students, have a convenient reference
to the subject.

There are certainly common themes to the study of the three classes of spaces
mentioned above. For example, the notions of zero sets, interpolating sets, Hankel
operators, and Toeplitz operators all make perfect sense in each of the three cases.
But needless to say, the resulting theories and results as well as the techniques
devised often depend on the underlying spaces. I will not say anything about the
various differences between the Hardy and Bergman theories; experts in these fields
are well aware of them.

What makes Fock spaces a genuinely different subject is mainly the flatness of
the domain on which these spaces are defined: the complex plane with the Euclidean
metric in our setup. Hardy and Bergman spaces are usually defined on curved
spaces, for example, bounded domains or half-spaces with a non-Euclidean metric.
Another major difference between the Fock theory and the Hardy/Bergman theory is
the behavior of the reproducing kernel in the L? case: the Fock L? space possesses an
exponential kernel, while the Hardy and Bergman L? spaces both have a polynomial
kernel.
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Let me mention a few particular phenomena that are unique to the analysis on
Fock spaces, as opposed to the more well-known Hardy and Bergman space settings.

First, the Fock kernel e%*" is neither bounded above nor bounded below, even
when one of the two variables is fixed. In the Hardy and Bergman theories, the
kernel function (1 —zw)? is both bounded above and bounded below when one of
the two variables is fixed. This makes many estimates in the Fock space setting
much more difficult. On the other hand, the exponential decay of e~ makes it
much easier to prove the convergence of certain integrals and infinite series in the
Fock space setting than their Hardy and Bergman space counterparts.

Second, in the Fock space setting, there are no bounded analytic or harmonic
functions other than the trivial ones (constants). Therefore, many techniques in the
Hardy and Bergman space theories that are based on approximation by bounded
functions are no longer valid.

Third, and more technically, in the theory of Hankel and Toeplitz operators on
the Fock space, there is no “cutoff”” point when characterizing membership in the
Schatten classes, while “cutoff” exists in both the Hardy and Bergman settings.
Also, for a bounded symbol function ¢, the Hankel operator H, on the Fock space
is compact if and only if Hg is compact. This is something unique for the Fock
spaces.

Fourth, because analysis on Fock spaces takes place on the whole complex
plane, certain techniques and methods from Fourier analysis become available. One
such example is the relationship between Toeplitz operators on the Fock space and
pseudodifferential operators on L?(R).

And finally, I want to mention the role that Fock spaces play in quantum physics,
harmonic analysis on the Heisenberg group, and partial differential equations. In
particular, the normalized reproducing kernels in the Fock space are exactly the
so-called coherent states in quantum physics, the parametrized Berezin transform
on the Fock space provides a solution to the initial value problem on the complex
plane for the heat equation, and weighted translation operators give rise to a unitary
representation of the Heisenberg group on the Fock space.

I chose to develop the whole theory in the context of one complex variable,
although pretty much everything we do in the book can be generalized to the case
of finitely many complex variables. The case of Fock spaces of infinitely many
variables is a subject of its own and will not be discussed at all in the book.

I have tried to keep the prerequisites to a minimum. A standard graduate course
in each of real analysis, complex analysis, and functional analysis should prepare
the reader for most of the book. There are, however, several exceptions. One is
Lindel6f’s theorem which determines when a certain entire function is of finite type,
and the other is the Calderén—Vaillancourt theorem concerning the boundedness
of certain pseudodifferential operators. These two results are included in Chap. 1
without proof. Used without proof are also a couple of theorems from abstract
algebra when we characterize finite-rank Hankel and Toeplitz operators in Chaps. 6
and 7, and a couple of theorems from the general theory of interpolation when we
describe the complex interpolation spaces for Fock spaces in Chap. 2.



Preface vii

I have included some exercises at the end of each chapter. Some of these are
extensions or supplements to the main text, some are routine estimates omitted in
the main proofs, some are “lemmas” taken out of research papers, while others
are estimates or lemmas that I came up during the writing of the book that were
eventually abandoned because of better approaches found later. I have tried my best
to give a reference whenever a nontrivial result appears in the exercises.

I have tried to include as many relevant references as possible. But I am sure that
the Bibliography is not even nearly complete. I apologize in advance if your favorite
paper or reference is missing here. I did not omit it on purpose. I either overlooked
it or was not aware of it. The same is true with the brief comments I make at the end
of each chapter. I have tried my best to point the reader to sources that I consider
to be original or useful, but these comments are by no means authoritative and are
more likely biased because of my limitations in history and knowledge.

As usual, my family has been very supportive during the writing of this book.
I am very grateful to them—my wife Peijia and our sons Peter and Michael—for
their encouragement, understanding, patience, and tolerance. During the writing of
the book, I also received help from Lewis Coburn, Josh Isralowitz, Haiying Li, Alex
Schuster, Kristian Seip, Dan Stevenson, and Chunjie Wang. Thank you all!

Albany, NY, USA Kehe Zhu






Contents

1 Preliminaries ...ttt 1
1.1 Entire FUNCHIONS ... ...t 3
1.2 Lattices in the Complex Plane......................oii L. 9
1.3 Weierstrass O-Functions ...............oooiiiiiiiiiiin i 13
1.4 Pseudodifferential Operators ..............coeeiiiiiiiiiieeiniinnnn... 19
1.5 The Heisenberg Group...........c.oeeiiiiiiiiiiiiiiiiiieeiiiine... 25
10 NS ittt e s 27
A 5 (= (o) = 29
2 FOCK SPaCeS ........oiintiiii i 31
2.1 Basic Properties ..........coooiuiiiiiiiiiiii i 33
2.2 Some Integral Operators ............cooviiuiiiiiiiiiiiiiieeenniiine... 43
2.3 Duality of Fock Spaces ............ccooiiiiiiiiiiiiiiii i 53
2.4 Complex Interpolation .............cooiiiiiiiiiiiiiiiiii i 59
2.5 Atomic DecompoSItion ...........ooiiiiiiiiiii i 63
2.6 Translation Invariance .............ccoooiiiiiiiiiiiiie it 75
2.7 A Maximum Principle ........ .. ..o 81
2.8 N O S ettt e 87
AR I 5 ) (o 1 DUt 89
3 The Berezin Transformand BMO ......................................... 93
3.1 The Berezin Transform of Operators................ooceeviiiiinne.... 95
3.2 The Berezin Transform of Functions........................ooooaat. 101
3.3 Fixed Points of the Berezin Transform................................. 113
3.4 Fock—Carleson Measures ..........uueiiuieeiiieeeiieeeiaeeiieennnnns 117
3.5 Functions of Bounded Mean Oscillation............................... 123
30 N S ettt ittt et e s 133
R & (e 1 TPt 135
4 Interpolating and Sampling Sequences..........................oooiial 137
4.1 A Notion of Density ..........oooiiuiiiiiiiiiiiiiiiiii i 139
4.2 Separated SEQUENCES ........covnuuuititeeii e 143

ix



Contents

4.3 Stability Under Weak CONvergence ..............eevvvuiieeeeennnnnn. 151
4.4 A Modified Weierstrass o-Function ..................ooooooi 159
4.5 Sampling SEQUENCES ......coeeiinntittt et 165
4.6 Interpolating SEqUENCES .....oouuutitteeeiie i eeaaaas 177
AT NS .ttt 187
4.8 EXCICISES .. uuttttitit ettt et 189
Zero Sets for Fock Spaces ... 193
5.1 A Necessary Condition ............ccooviiiiiiiiiiiiiiiiieeinniiee... 195
5.2 A Sufficient Condition ............oooiiiiiiiiiiiii 197
5.3 Pathological Properties ............cccooiiiiiiiiiiiiiiiiiiii i, 199
54 NOES ..ttt 209
5.5 BXEICISES. ...ttt ittt e 211
Toeplitz Operators ...t 213
6.1 Trace Formulas...........coooiiiiiiiiiiiiiiiii 215
6.2 The Bargmann Transform ..o, 221
6.3 Boundedness ............ooiiiiiiiiii i 229
6.4 COMPACIICSS . nnneetttet ettt e e et e e e e e e aeeees 237
6.5 Toeplitz Operators in Schatten Classes ............ooeeeeeiiiinnne... 245
6.6 Finite Rank Toeplitz Operators ..........c.c.vveeiiiiiiiiieeennninnnee... 255
0.7 INOLES ...ttt 263
6.8  EXEICISES....utintit ittt 265
Small Hankel Operators ................coooiiiiiiiiiiiiiiiiiiiiii .. 267
7.1  Small Hankel Operators ............ccooiiiiiiiiiiiiiiiii ... 269
7.2 Boundedness and Compactness ..............cceeeviuiiiieeennnnnnen... 271
7.3 Membership in Schatten Classes .............ccoviiiiiiiiiiiiie... 275
7.4 Finite Rank Small Hankel Operators..................cooooviiiie... 281
75 T 0] 1 283
T.0  EXOICISS ottt ittt 285
Hankel Operators ..............cooiuiiiiiiiiii e 287
8.1 Boundedness and Compactness ............coeviuiiieeiniunnneeeeennn. 289
8.2 Compact Hankel Operators with Bounded Symbols .................. 293
8.3  Membership in Schatten Classes .............c.ooooiiiiiiiiiiiiiann. 301
B N O S e 327
8L BT CaS S . et 329
References. ...........oooiiiiii i 331
Index ... oo 341



Chapter 1
Preliminaries

In this chapter, we collect several preliminary results about entire functions,
lattices in the complex plane, pseudodifferential operators, and the Heisenberg
group. The purpose is to fix notation and to facilitate references later on. All the
results concerning entire functions, except Lindelof’s theorem, are well known and
elementary. The section about Weierstrass o-functions is self-contained, while the
section on pseudodifferential operators is very sketchy.

K. Zhu, Analysis on Fock Spaces, Graduate Texts in Mathematics 263, 1
DOI 10.1007/978-1-4419-8801-0_1,
© Springer Science+Business Media New York 2012
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1.1 Entire Functions

This book is about certain spaces of entire functions and certain operators defined
on these spaces. So we begin by recalling some elementary results about entire
functions. The first few of these results can be found in any graduate-level complex
analysis text, and no proof is included here.

Let C denote the complex plane. If a function f is analytic on the entire complex
plane C, we say that f is an entire function. One of the fundamental results in
complex analysis is the following identity theorem.

Theorem 1.1. If f is entire and the zero set of f,

Z(f)={z€C: f(z) =0},

has a limit point in C, then f =0 on C.
Another version of the identity theorem is the following:

Theorem 1.2. Suppose f is an entire function. If there is a point a € C such that
f"(a)=0foralln >0, then f =0 onC.

When we say that {z,} is the zero sequence of an entire function f, we always
assume that any zero of multiplicity k is repeated k times in {z, }. As a consequence
of the identity theorem, we see that the zero set of an entire function that is not
identically zero cannot have any finite limit point and no value occurs infinitely
many times in the sequence. Consequently, the zero sequence {z,} of an entire
function is either finite or satisfies the condition that |z,| — e as n — oo. In particular,
we can always arrange the zeros so that |z1| < |zp| <+ <|zy| < -+

The following result is called the mean value theorem, which follows from the
subharmonicity of the function |f(z)|? in |z—a| < R.

Theorem 1.3. Suppose f is entire and 0 < p < oo. Then

1

If(a)]” < 5/02” |f(a+re'®)|P d6 (1.1)

forallae Candall r € [0,e0).

Because r above is arbitrary, we often multiply both sides of (1.1) by some
function of r and then integrate with respect to r. For example, if we multiply both
sides of (1.1) by r and then integrate from O to R, the result is

@l < o [ rOra. 12)

~ nR?

where z = x + iy and dA(z) = dxdy is the Lebesgue area measure. The inequality in
(1.2) is the area version of the mean value theorem.
The next result is called Liouville’s theorem.
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Theorem 1.4. A bounded entire function is necessarily constant. More generally,
if a complex-valued harmonic function defined on the entire complex plane is
bounded, then it must be constant.

The lack of bounded entire functions is one of the key differences between the
theory of Fock spaces and the more classical theories of Hardy and Bergman spaces.

A central problem in complex analysis is the study of zeros of analytic functions
in specific function spaces. An important tool in any such study is the classical
Jensen’s formula below:

Theorem 1.5. Suppose that

(a) f is analytic on the closed disk |z| <,
(b) f does notvanish on |z| =r,

(c) f(0)=1, and

(d) the zeros of f in |z| < rare{z1, -+ ,zn}, with multiple zeros repeated according
to multiplicity,
Then
210 ! /znlo £(rei)|d6 (1.3)
— r ) )
S "o e

If £(0) is nonzero but not necessarily 1, Jensen’s formula takes the form

2n .
log|£(0 2 log — / log|f(re'?)|d6, (1.4)
where {z;,---,zy} are zeros of f in 0 < |z| < r. More generally, if f has a zero of
order k at the origin, then Jensen’s formula takes the following form:
If ( )I 1 / o io
klogr=— > 1 — 1 )| d6
+klogr Z 0g|z| o o loglf(re®)1de,
where {z;,---,zv} are zeros of fin 0 < |z| < r.

Let f be an entire function. We can factor out the zeros of f in a canonical way,
a process that is usually referred to as Weierstrass factorization. The basis for the
Weierstrass factorization theorem is a collection of simple entire functions called
elementary factors. More specifically, we define

EO(Z) =1 -3

and for any positive integer n,
2 7"
E,(z) = (1—2z)exp <Z+E+"'+;> .

If a is any nonzero complex number, it is clear that £(z/a) has a unique, simple zero
atz =a.
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Theorem 1.6. Let {z,} be a sequence of nonzero complex numbers such that the
sequence {|z,|} is nondecreasing and tends to . Then it is possible to choose a
sequence {p,} of nonnegative integers such that

had r Pn+l
Y < —) < oo (1.5)
for all r > 0. Furthermore, the infinite product
- z
2)=[]Ep, (—) (1.6)
n=1 Zn
converges uniformly on every compact subset of C, the function P is entire, and the

zeros of P are exactly {z,}, counting multiplicity.

Note that the choice p, = n — 1 will always satisfy (1.5). In many cases, however,
there are “better” choices. In particular, if {z,} is the zero sequence of an entire
function f and if there exists an integer p such that

; |p+1 oo, (1.7)

we say that f is of finite rank. If p is the smallest integer such that (1.7) is satisfied,
then f is said to be of rank p. A function with only a finite number of zeros has
rank 0. A function is of infinite rank if it is not of finite rank.

If f is of finite rank p and {z,} is the zero sequence of f, then (1.7) is satisfied
with p, = p. The product P(z) associated with this canonical choice of {p,} will be
called the standard form.

Theorem 1.7. Let f be an entire function of finite rank p. If P is the standard
product associated with the zeros of f, then there exist a nonzero integer m and
an entire function g such that

f(z) =2"P(z)es, (1.8)

The integer m is unique, and the entire function g is unique up to an additive constant
of the form 2kmi.

For an entire function of finite rank, we say that (1.8) is the standard factorization
of f, or the Weierstrass factorization of f.

Let f be an entire function of finite rank p. If the entire function g in the standard
factorization (1.8) of f is a polynomial of degree ¢, then we say that f has finite
genus. In this case, the number yt = max(p, q) is called the genus of f.

Let f be an entire function. For any r > 0, we write

M(r) = My(r) = sup{|f(2)| : |z| = r}.
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We say that f is of order p if

p = limsup M.
oo logr
It is clear that 0 < p < oo. When p < oo, f is said to be of finite order; otherwise, f
is of infinite order.
There are two useful characterizations for entire functions to be of finite order,
the first of which is the following:

Theorem 1.8. An entire function f is of finite order if and only if there exist positive
constants a and r such that

[f@] <exp(lal*), [z >~
In this case, the order of f is the infimum of the set of all such numbers a.

The following characterization of entire functions of finite order is traditionally
referred to as the Hadamard factorization theorem.

Theorem 1.9. An entire function f is of finite order p if and only if it is of finite
genus L. Moreover, the order and genus of f satisfy the following relations: [ <
p<u+l.

When 0 < p < oo, we define
logM
o = limsup og—(r).
r—soo rP

If 0 < oo, we say that f is of finite type. More specifically, we say that f is of order
p and type 0. If 0 = oo, we say that f is of maximum type or infinite type.

Let {z,} denote the zero sequence, excluding 0, of an entire function f. The
infimum of all positive numbers s such that

)3
n=1

will be denoted by p; = pi(f). The smallest positive integer s satisfying the
convergence condition above will be denoted by m + 1.

1
|Zn]*

< oo

Theorem 1.10. For any entire function f that is not identically zero, we have the
following relations among the constants defined above:

(a) pr—1<m<p.

(b) If p is not an integer, then p = py.

(¢c) m=[p1] if p1 is not an integer.

Here, [x] denotes the greatest integer less than or equal to x.
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The following result is sometimes called Lindeldf’s theorem. This result is not so
standard in the sense that it does not appear in most elementary complex analysis
texts. See [38] for a proof.

Theorem 1.11. Suppose that p is a positive integer, f is an entire function of order
p, f(0) #0, and {z,} is the zero sequence of f. Then f is of finite type if and only
if the following two conditions hold:

(a) n(r) = O(rP) as r — o, where n(r) is the number (counting multiplicity) of

zeros of fin |z] < r.
(b) The partial sums

| =

SO

Z

are bounded in r.

Lindel6f’s theorem will be useful for us in Chap. 5 when we study zero sequences
for functions in Fock spaces. The reader should be mindful of the fact that there
are several results in complex analysis that are called Lindel6f’s theorem. In most
cases, these results are certain generalizations of the classical maximum modulus
principle.
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1.2 Lattices in the Complex Plane

The complex plane is flat, and lattices in it are easy to describe. We will need to use
rectangular lattices on several occasions later on. In this section, we fix notation and
collect basic facts about lattices in the complex plane.

The simplest lattice in C is the standard integer lattice

7 ={m+in:meZncl},

where Z = {0,41,42,--- , } is the integer group. All lattices we use in the book are
isomorphic to Z2.

Let w be any complex number, and let @; and @, be any two nonzero complex
numbers such that their ratio is not real. For any integers m and n, let wy,,,, = © +
m; + naw,. The set

A=A(w,01,0) ={@n :meZncl}

is then called the lattice generated by @, @y, and m,.
The initial parallelogram at @ spanned by ®; and w, has vertices

0, O0+0, O+am, O+o0;+o,

and is centered at
1
c=mw+ §(w1 + m).

We shift this parallelogram so that the center becomes @ and the vertices become

1 1 1 1
W—E(Q’I‘FQ’Z)’ (0+§(w1—w2)7 o+ 5((02—601), o+ 5((014-(02).

We denote this new parallelogram by Ryo and call it the fundamental region of
A(w,;,m,). For any integers m and n, let Ry, = Roo + Oy, With @y, being the
center of R,,;;,.

Lemma 1.12. Let A = A(w, oy, @) be any lattice in C. For any positive number
8, there exists a positive constant C such that

2 e dl—wP <C

ZEA

forallw e C.
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Proof. By translation invariance, it suffices for us to prove the desired inequality for
w in the fundamental region Ry of A. If w is in the relatively compact set R, then
|w/z| < 1/2 for all but a finite number of points z € A. For all such points z, we have

1
e =wl* = |21 = (w/2)|* > Z|Z|2'

. _02 . . . .
Since } o€ 4 1 is obviously convergent, we obtain the desired result. a

Lemma 1.13. With notation from above, we have
C=|J{Rm :meZnelZ},

and

fraue=3 [ roue
for every f € L'(C,dA).

Proof. The decomposition of C into the union of congruent parallelograms is
obvious. Since any two different R,,, only overlap on a set of zero area, the desired
integral decomposition follows immediately. a

In several situations later, we will need to decompose a given lattice into several
sparse sublattices. The following lemma tells us how to do it.

Lemma 1.14. Let A = A(®, @1, @) be a lattice in C. For any positive number R,
there exists a positive integer N such that we can decompose A into the disjoint
union of N sublattices,

A=AU---UAy,

such that the distance between any two points in each of the sublattices is at least R.
Proof. Fix a positive integer k such that k|@;| > R and k|| > R. For each j =
(jl,jz) with0§j1 §kand0§j2 <k, let
Aj = A0+ j1or+ jaon,koy, kan)
= {(a)+j1a)1 +j2(l)2) + (mkw, +nkap) :m € Z,n € Z}.
Then each A; is a sublattice of A; the distance between any two points in A; is
at least R, and A = UA;. There are a few duplicates among A; caused by points

from the boundary of the parallelogram at @ spanned by k®; and kw,. After these
duplicates are deleted, we arrive at the desired decomposition for A. O
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Most lattices we use in the book are square ones. More specifically, for any given
positive parameter r, we consider the case when @ =0, @; = r, and @, = ir. The
resulting lattice is

"7 ={rm+im:mecZncl}.

We mention two particular cases. First, for r = y/m/o, where « is a positive
parameter, the resulting lattices are used in the next section when we introduce the
Weierstrass o-functions. Second, for r = 1/N, where N is a positive integer, the
resulting lattices will be employed in Chaps. 6—8 when we characterize Hankel and
Toeplitz operators in Schatten classes.

For any two points z = x +iy and w = u +iv in rZ?, we let y(z,w) denote the
following path in rZ?: we first move horizontally from z to u + iy and then vertically
from u+1y to u+1iv. When z = 0, we write y(w) in place of y(0,w). The path y(z,w)
is of course discrete. We use |y(z,w)| to denote the number of points in y(z,w) and
call it the length of y(z,w).

The following technical lemma will play a critical role in Chap. 8.

Lemma 1.15. For any positive r and o, there exists a positive constant C = C,.
such that

Z Z efolszlzxy(z’w)(u) <C

zerZ? werZ?

for all u € rZ?, where Xy(zw) IS the characteristic function of ¥(z,w).

Proof. Without loss of generality, we may assume that » = 1. Adjusting the constant
o will then produce the general case.
Also, it is obvious that

uty(zw) = y(ut+z,utw),

which implies that the sum

§= Z Z 676IZ7WIZXY(Z,W)(M)

€72 weZ?

is actually independent of u. For convenience, we will assume that # = 0.

For any z and w, the path y(z,w) consists of a horizontal segment and a vertical
segment (one or both are allowed to degenerate). From the definition of y(z, w), we
see that the origin O lies on the horizontal segment of y(z,w) if and only if one of
the following is true:

(1) z is on the negative x-axis and w is in the first or fourth quadrant: z = —n,
w = m+ ki, where n and m are nonnegative integers and k is an integer.

(2) z1is on the positive x-axis and w is in the second or third quadrant: z =n, w =
—m + ki, where n and m are nonnegative integers and k is an integer.
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Similarly, 0 lies on the vertical segment of y(z, w) if and only if one of the following
is true:

(3) w is on the positive y-axis and z is in the third or fourth quadrant: w = ni,
7z =k —mi, where n and m are nonnegative integers and k is an integer.

(4) w is on the negative y-axis and z is in the first or second quadrant: w = —ni,
7z = k+mi, where n and m are nonnegative integers and k is an integer.

In each of the cases above, we have
lz—w)? = (n4+m)>+k> > n*+m? + k>

Therefore,

o oo =

S<4 z z z o O (> +m*+k%)

n=0m=0k=—o

=4 3 e~on S e—om S e K < oo,
EO )y )y

m=0 k=—c0

This proves the lemma. O
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1.3 Weierstrass o-Functions

In this section we introduce several Weierstrass functions on the complex plane and

prove their periodicity or quasiperiodicity. In particular, the Weierstrass o-function

will serve as a prototype for functions in Fock spaces and will play an important role

in our characterization of interpolating and sampling sequences for Fock spaces.
Lattices in this section are all based at the origin:

=A0,01,) ={Om}, O =mo+nw.
To every such lattice, we associate a function P(z) = P4 (z) as follows:

1
— Wy ) wr%m

:_+z

; (1.9)

where the summation (with a prime) extends over all integers m and n with (m,n) #
(0,0).

Proposition 1.16. The function P is an even meromorphic function in the complex
plane whose poles are exactly the points in the lattice A. Furthermore, P is doubly
periodic with periods @, and @,:

P(z+ o) = P(2), Plz+ ) =P(2), (1.10)

forallz€ C—A.
Proof. For any small 0 > 0, let

Us={z€C:d(z,A) > 0,|z| < 1/5}.

It is clear that for z € Ug we have

1 L _, ( 1 )
(2= Om)* o, | @mn]?
when || is large. Since

1
S i<

(mlZ(0.0) | @

the series in (1.9) converges uniformly and absolutely to an analytic function in Ug.
Since 0 is arbitrary, the series in (1.9) converges to an analytic function ? on C— A.
At each point @, it is clear that P has a double pole. So P is meromorphic with
double poles at precisely the points of A.
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To see that P is doubly periodic with periods @; and @,, we differentiate
the defining equation (1.9) term by term, which is permissible because the series
converges uniformly on compact subsets of C — A. Thus,

©=-2% —o

m,n Z_wm”

Since {—@y, : m € Z,n € Z} represents the same lattice A and the series above
converges absolutely (so its terms can be rearranged in any way we like), we see
that P’ is an odd function, and so the original function P is even.

On the other hand, for each k = 1,2, we have

j) Z+a)k :_ZZW

Since { @y — 0y : m € Z,n € Z} represents the same lattice A and the above series
converges absolutely for any z € C — A, we see that P'(z+ @) = P'(z), so P is
doubly periodic with periods @; and ;.

If we integrate the equation P'(z+ @) = P'(z) on the connected region C — A,
we will find a constant C; such that P(z+ ay) = P(z) + C; for k = 1,2 and all
z€ C—A. Setting z = —wy/2 and using the fact that P is even, we obtain C; = 0
for k = 1,2. This shows that P is doubly periodic with periods m; and @;. O

To every lattice A = A (0, 0y, @) = { Wy, }, we associate another function §(z) =
€A (z) as follows:

:—+Z L . (1.11)

a)mn wmn mn

The following proposition lists some of the basic properties of this function, which
should not be confused with the famous Riemann {-function.

Proposition 1.17. Each { is an odd meromorphic function with simple poles at
precisely the points of A. Furthermore, for k = 1,2, we have

Cz+ax) = E(z) + M, z€C—A, (1.12)

where M =28 (o /2).

Proof. Again we fix any small positive number § and consider the region U defined
in the proof of the previous proposition. It is clear that

1 1 z 1
+ +—2:0 T3> zeUs,
Z— Wpp Wn (V' |wm"|
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as |@y,| — oo. It follows that the series in (1.11) converges to an analytic function
in C — A, and the convergence is uniform and absolute on the relatively compact set
Us. It is clear that the resulting function { has a simple pole at (and only at) each
point of A.

A rearrangement of terms in the series (1.11) easily shows that { is an odd
function on C — A. Differentiating the series (1.11) term by term shows that the two
Weierstrass functions P and { are related by the differential equation §’(z) = —P(z)
coupled with the condition

iy (29-3) -0

If we integrate the equation P(z+ @) = P(z) on the connected region C — A, we
obtain a constant 1 such that {(z+ay) = {(z) + Ny fork=1,2and allz€ C—A.
Setting z = — /2 and using the fact that § is odd, we obtain 1 = 2{ (@ /2). This
completes the proof of the proposition. a

Because of the relations in (1.12), we say that the Weierstrass function { is
quasiperiodic.

Lemma 1.18. The periods @y, and the constants My are related by the following
equation:

N — N = 2mi. (1.13)
Proof. If we pull the center ¢ = (@ + @,)/2 of the parallelogram spanned by @,

and @, to the origin, the result is another parallelogram R = R, with the following
vertices:

1 1 1 1
—§(w1+wz), §(a>z—w1), §(w1—wz), §(w1+wz).

Recall that R = R, is the fundamental region of the lattice A.
It is clear that § is analytic on R, up to the boundary, except a simple pole at the
center of R (which is the origin) with residue 1. Therefore,

$(z)dz =2mi.
JdR
Break this into integration over the four sides of R and use the quasiperiodicity of

{. We obtain the desired result. a

To every lattice A = A(0, w1, @) = {@®mn }, Wwe associate yet another function
0(z) = o4 (z) as follows:

2

G(Z)—ZH'{(l_wfnn)e)(p(wimjL%,ﬁ,,)]' (1.14)

The following proposition lists some of the basic properties of the Weierstrass
o-functions.
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Proposition 1.19. Each o is an entire function whose zero set is exactly the lattice
A ={ @y }. Furthermore, G is odd and quasiperiodic in the following sense:

o(z+ @) = —e™H %2 g (7), (1.15)

where k = 1,2 and ny are the constants from the previous proposition.

Proof. Tt follows from a standard argument involving the Weierstrass product (see
Sect. 1.1) that the infinite product in (1.14) converges to an entire function ¢ and the
convergence is uniform and absolute on any compact subset of the complex plane.
It is also clear that the zero set of o is exactly the lattice A = { @y }-

Replace z by —zin (1.14) and observe that {— @y, : m € Z,n € Z} is exactly the
same lattice A (arranged differently). We see that the function o is odd.

To prove the quasiperiodicity of o, we note that the Weierstrass functions ¢ and
¢ are related by the differential equation

< 10ga(d) = {(2),

coupled with the condition

lim @
=0 Z

=1.
If we integrate the equation

Clz+ ) =C(2) + Mk

in the connected region C — A and then exponentiate the result, we obtain a constant
¢ such that

o(z+ o) = ce™ o (z), zeC.
Let z = —ay /2 and use the fact that ¢ is odd. We get ¢; = —ek®%/2, O

Finally, in this section, we consider the special case of square lattices. For any
positive parameter ¢, we consider the lattice A = A, given by w; = y/7/a and
w; = +/7m/ai. Thus,

Ag={v/r/o(m+in) :m € Z,n € Z}.

In this particular case, we will compute the constants 1, and relate the quasiperiod-
icity of o to a certain isometry on Fock spaces.

Proposition 1.20. Suppose o is the Weierstrass o-function associated to the square
lattice Aq = {@pn}, where @y = \/T/ol(m~+1n), so that @y = \/T/ot and @, =
v/m/ai Then Ny = v/mo and Ny = —/mai. Furthermore,

e@@mi=§loml 5 (2 _ g, ) = (~1ymrimg() (1.16)
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for all z € C and @y, € Ag.

Proof. In this particular case, we have

Opn = \/T/o(m+in) =iy/m/o(n—im) = i0,,,,

where m’ = —m. It follows that

(iz) =

Therefore,

=2 (@n/2) = 24 i1 /2) = 2¢ (0 /2) = .

This, along with (1.13), gives N} = v/ and , = —y/mai.
To prove the translation relation in (1.16), observe that

WOpn = MO +nwy.
It follows from (1.15) and induction that
O (z4may) = (—1)"o(z)e"Mmet 3 mer

for all positive integers m. Since ¢ is an odd function, it is then easy to see that the
above equation also holds for negative integers m. Similarly,

O (z+nwy) = (—1)"c(g)e"m+ 1 me

for all integers n. Therefore,

G2+ W) = (— 1) EMONEI 0 (7 4 )

(—1)mHnenma(ztmen)+ 3P nwy gmmizgminor g ()

|
(-1 )m+ne(nnz+mm Jtnmm o+ (R ey +m?n o) o(2).

Plug in
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o =/r/a, m=+/n/oi, N =IO, N =—Vroi.

We obtain

O-(Z + a)mn) = (_ 1 )m+n+mnea6mnz+% ‘wmn ‘2 O_(Z)

for all z € C and all w,,, € Ay. Replacing w,,,, by — ®,,,, we obtain
e@hmi=Floml® (7 — gy,,) = (—1)mTrmn g (7)

for all z € C and all w,,,, € Aq. O

Corollary 1.21. For any a > 0, the Weierstrass function ¢ associated to Ay has
the following properties:

(a) The function |0(z) |e7%‘zlz is doubly periodic with periods /7t /o andi\/Tt/ .
(b) |0'(z)|(f%|z‘2 ~d(z,Aq), where d(z,Ay) denotes the Euclidean distance from z
to the lattice Ag.

Proof. Property (a) follows from the quasiperiodicity of o; see (1.15) and (1.16).
Property (b) then follows from (a) and the fact that each point in A is a simple zero
of 0. O

As a consequence of condition (b) above, we see that the Weierstrass o-function
associated to Ay is of order 2 and of type o/2.
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1.4 Pseudodifferential Operators

One of the tools we will employ in Chap.6 when we study Toeplitz operators is
the notion of pseudodifferential operators. More specifically, Toeplitz operators on
the Fock space are unitarily equivalent to a class of pseudodifferential operators on
L?(R). In this section, we introduce the concept of pseudodifferential operators on
the real line and collect several results in this area that will be needed later. The
references for this section are Folland’s books [92] and [93].

We begin with two well-known operators D and X defined on the space of smooth
functions on R by

XfW) =5/, DI = 5 f (), (1.17)
ol

where o is any fixed positive constant. The introduction of a parameter ¢ at this

point will facilitate and simplify our computations later in association with the Fock

spaces. The number & = 7/ @ plays the role of Planck’s constant in quantum physics.

It is easy to verify that, as densely defined unbounded operators on L?(RR,dx),

both D and X are self-adjoint. This is an easy consequence of integration by parts.
The operators

Z=X+iD, Z'=X-iD, (1.18)

will also be useful in our discussions.
If f is a sufficiently good function on R, it is clear how to define f(D) and f(X),
respectively. For example, if f(x) = ¥ a;x* is a polynomial, then

fD) =Y aD  f(X)=Y aX"

are perfectly and naturally defined. This easily extends to a large class of symbol
functions f. What results in are symbol calculi for the self-adjoint operators D
and X.

The notion of pseudodifferential operators arises when we try to establish a
symbol calculus for the pair of operators D and X. In other words, if we are given a
good function f({,x) on R x R, we wish to define an operator f(D,X) in a natural
way. If f = al + bx is linear, obviously we should just define f(D,X) = aD + bX.
But we already run into problems when f is just a second-degree polynomial, say

because now we have two natural choices,

f(D,X)=DX or f(D,X)=XD.
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The operators D and X do not commute, so the two products above are not equal. In
fact, it is easy to verify the following commutation relation:

1
[D.X] =DX-XD =51, (1.19)

where [ is the identity operator.

If f(&,x) is a polynomial in { and x, then there are several canonical ways to
define f(D,X). For example, if we want the differentiations to come before any
multiplication, then we write

f(Cx) = Zamnxmgn
and define
f(D,X) =Y amX"D".

Similarly, if we want to perform multiplications before differentiations, then we
write

f(&,x) = Zamngnxm
and define

f(D,X) =Y amD"X".

Again, the resulting operators are generally different.

It is also possible to carry out the above constructions using the operators Z and
Z* from (1.18) and think of a function of two real variables as depending on z and
Z. More specifically, if

0(z,72) = zamnznzm — zamnzmzn
is a polynomial in z and Z, then we can define
0w(Z",2) =Y, amZ™Z", ow(Z,.Z*) = amZ"'Z*". (1.20)

The functional calculi defined this way are called Wick and anti-Wick correspon-
dences. They have been studied extensively in analysis and mathematical physics.
There is another important functional calculus for D and X, the John—Nirenberg
correspondence, which is especially important in partial differential equations.

We will not pursue any of the above correspondences. Instead, we focus on the
so-called Weyl pseudodifferential operators. This approach depends on a particular,
but natural, choice for the definition of o(D,X) when (¢, x) = e2™(P$+4%) wwhere p
and ¢ are real constants. Once this is done, the definition of ¢(D, X ) for more general
symbol functions ¢ (&,x) can be given with the help of Fourier and inverse Fourier
transforms.
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Definition 1.22. For any real coefficients p and ¢, we define
eZai(pD+qX)f(x) _ eZaiquraiqu(x_i_p)’ (1.21)

or, equivalently,

eZni(pD+qX)f(x) _ e2ﬂin+’,‘72iﬂqf <x+ %) . (1.22)

To see the rationale behind the definition above, let
glot) = [P+ £ ()
denote the formal solution to the differential equation

% — 2ai(pD+ X (1.23)

subject to the initial condition g(x,0) = f(x). Rewrite the equation in (1.23) as

dg  dg

=2 p=2 =i 1.24
5 Pgy  2Maxs (1.24)
and let G(t) = g(x(z),t) with x(¢) = x — pt. Then by the chain rule,

i 98 g
(t)_E p£7

so G(r) satisfies the following equations:
G'(1) = 2aig(x — pr)G(1),  G(0) = f(x).
It is elementary to solve the above equation and obtain
G(1) = f(x)e? =,

Lett = 1. We have
glx—p, 1) = flx)e2e—eirn,

Replace x by x4 p. We arrive at
e2ai(pD+qX)f(x) _ g(x, 1) _ e2aiqx+aiqu(x+p)'

This gives a justification for the definition in (1.21).
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More generally, if 6({,x) is regular enough so that we can perform the Fourier
and inverse Fourier transforms on it, then

G(C,X)=/R/R&(p,q)ez”i(”“q’”dpdq, (1.25)

and we define
o(0.X) = [ [ 5(p.g)e ) dpdg. (1.26)
JRJR
Here, the integral is an ordinary Bochner integral whenever G, the Fourier transform
of ,isin L' (R x R).
Theorem 1.23. If o({,x) and f(x) are regular enough, then we have

o006 = [, fo (Hy)ez"“(’”’”f(y)dydc. (1.27)

Proof. The Fourier inversion formula
[ [y avag = s
RJR
can be expressed in the language of distributions as
/ 2™ 4L = §(x), (1.28)
JR

where 6(x) is classical §-function. Therefore,

o(D,X)f(x)
://a(p,q)ez”i(”m"x)f(X)dpdq
RJR

- [ [[st.ar (x+ ) apag

/ / / / o 2i(pL+qw) g 2miqr+ T4 e %) dpdgdgdw
-/ /G(C,H;fg *2’“”‘5f(x+ o) drdc

=2 [ [o(3ten)e o parac,

which is the desired formula. O
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It is thus also natural to simply take (1.27) as the definition of the Weyl
pseudodifferential operator o(D,X). We remind the reader that there is a positive
parameter o built into our definition of pseudodifferential operators. To see the pre-
cise relationship between our rescaled o(D,X) and the classical pseudodifferential
operators (as defined in Folland’s book [92], for example), we change variables and
rewrite (1.27) as follows:

o(D,X) fi/(rx) = /R /R Gr( %) MG £ (y) dyd(, (1.29)

where r = \/m/a. Here, fr(x) = f(rx) denotes the dilation of f by a positive
number r. The integral on the right-hand side of (1.29) is the classical definition
of the Weyl pseudodifferential operator with symbol o,

The results in the three theorems below are all invariant under dilation. Therefore,
our rescaling does not alter the validity of these classical results.

The pseudodifferential operator 6(D,X) is so far only loosely defined. If o
is sufficiently regular and f is compactly supported on R, then the integral in
(1.27) converges. For general o, the integral in (1.27) may or may not converge,
and the definition of ¢(D,X)f may only be defined for f in a certain class.
Our main concern here is the following problem: for which functions ¢ can the
pseudodifferential operator ¢(D,X) be extended to a bounded or compact operator
on L*(R,dx)?

Theorem 1.24. Suppose 6 (¢, x) is a function on R x R of class C* and there exists
a positive constant C such that

"o
W(C,x)

«

n+m<3

for all £ and x in R. Then the pseudodifferential operator o(D,X) is bounded on
L (R, dx).

The above result is usually referred to as the Calderén—Vaillancourt theorem.
Let Cy(C) = Cyp(R x R) be the space continuous functions f on C =R x R such
that f(z) — 0 as z — oo. The following is the compactness version of the Calderén—
Vaillancourt theorem.

Theorem 1.25. Suppose 6 (¢, x) is a function on R x R of class C> and

an+mo-

W EC()(RXR)

for every pair of nonnegative integers m and n with n +m < 3. Then the pseudodif-
ferential operator 6(D,X) is compact on L*(R, dx).
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There is also a result concerning membership of the pseudodifferential operators
o(D,X) in Schatten classes. We refer the reader to [250] for a brief discussion of
Schatten class operators on a Hilbert space.

Theorem 1.26. Suppose 1 < p < e and there exists a positive constant k = k(p)
such that

an+m6

- - P
g €L (R x R,dxd{)

for all nonnegative integers m and n with n+m < k. Then the pseudodifferential
operator 6(D,X) belongs to the Schatten class S).
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1.5 The Heisenberg Group

Although we will not use the Heisenberg group in a critical way anywhere in the
book, it is interesting to show how it fits nicely in the theory of Fock spaces. In this
brief section, we give its definition and produce a unitary representation based on
pseudodifferential operators.

The Heisenberg group H is the set C x R (or R? x R) with the following group
operation:

(z,5) D (w,t) = (z4+w,s+1t—Im(zw)),

where z and w are complex and s and ¢ are real.
More generally, if n is any positive integer, the Heisenberg group H, is the set
C" x R with the group operation

(2,8) © (wt) = (z+w,s+1t—Im((z,w))),
where z = (z1,-** ,2n), w = (W1, -+ ,w,), and
(z,w) = 21w+ + 2, Wp.

There is a natural representation of the Heisenberg group as unitary operators on
the Hilbert space L*(RR,dx). To simplify notation, let us write

p(p.q) = e PPraX)

for real p and q.
Lemma 1.27. We have

p(p1,91)p(p2,q2) = e P12=P20)p(p) 4 ps g1 + o)

for all real numbers p1,q1,p2, and q>.

Proof. This follows directly from the definition of p(p,q) in (1.21). Details are left
to the reader. ad

Lemma 1.28. We have

p(p1:q1)p (p2,q2) = 24 P192-P200) p (1) g2)p (p1,q1)

for all real numbers p1,q1, pa2, and qs.
Proof. This is a direct consequence of Lemma 1.27. O

Theorem 1.29. Suppose « is any positive parameter and pseudodifferential oper-
ators are defined as in the previous section. For any real p and q, the pseudodif-
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20i(pD+aX) s q unitary operator on L*(R,dx). Furthermore, the

ferential operator e
mapping
(p+ig,1) = u(p+ig,1) =: ™ e2%i(PD+aX)

is a unitary representation of the Heisenberg group H on L*(R, dx).

Proof. By (1.21), the action of each u(z,1) on L*(R,dx), where z € C and ¢ € R, is
a unimodular constant times a certain translation of R. Since any translation of R is
a unitary operator on L? (IR, dx), we see that each u(p +ig,t) is a unitary operator on
L*(R,dx).

Let z; = p1 +1iq; and zp = p> +ig>. It follows from Lemma 1.27 that

u(zi,1)u(z2,12) = ) p(p1,q1)p(p2,q2)

= e+ tP92=P29) b (1 + py. g1 + @)

=u(z1 + 22,61 + o —Im(z122)).

This shows that u(z,) preserves the group operation in the Heisenberg group H. O

The mapping u(z,t) is called the Schrodinger representation of the Heisenberg
group H on L?(R). In the next chapter, we will obtain another representation of H,
a unitary representation on the Fock space based on weighted translations.
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1.6 Notes

The results in the first section, except Lindelof’s theorem, are all well known and
can be found in any elementary complex analysis book. In particular, these results
can all be found in Conway’s book [67].

Lindelof’s theorem will be needed in Chap. 3 when we study zero sequences for
Fock spaces. This is probably not a result that can be found in elementary texts. See
2.10.1 of Boas’ book [38] for a detailed proof of this result.

The section about lattices in the complex plane is completely elementary.
Whenever we really use lattices later on, we restrict our attention to square lattices,
although many arguments can easily be adapted to arbitrary lattices, even to
sequences that behave like lattices. Perhaps Lemma 1.15 looks peculiar to the reader,
but it is critical for the study of Hankel operators in Chap. 8.

Pseudodifferential operators constitute an important subject by itself, and there is
extensive literature about them. Of course, we have only touched the surface of this
vast area of modern analysis. The connection between pseudodifferential operators
and Toeplitz operators on the Fock space is both fascinating and useful. Because
of this connection, the study of Toeplitz operators on the Fock space becomes
especially interesting and fruitful. In particular, this provides us with extra and
unique tools to study Toeplitz operators on the Fock space as opposed to Toeplitz
operators on the Hardy and Bergman spaces.

Our presentation in Sect. 1.4 follows Folland’s books [92, 93] very closely. A
slight modification is made in the definition of pseudodifferential operators here in
order to incorporate the weight parameter o into everything. Note that the proof of
Theorem 1.23 depends on certain elementary facts from Fourier analysis that we are
taking for granted. It should be easy for the interested reader to make the arguments
completely rigorous.

The Heisenberg group appears very naturally in many different areas, including
Fourier analysis, harmonic analysis, and mathematical physics. The Heisenberg
group shows up in this book when we study the action of translations on Fock
spaces. Although it is possible for us to avoid the Heisenberg group, we thought
it is nice to put things in the right context.

The Weierstrass o-functions provide a family of examples that will be very useful
to us later on when we study zero sets, interpolating sets, and sampling sets. The
book [241] contains much more information about the Weierstrass o-functions as
well as several other important classes of entire and meromorphic functions.
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1.7 Exercises

e NN

11.

12.

13.
14.

. Suppose f is entire, f(z) # 0 for some z € C, and |z| < r. Then log|f(z)] is

equal to
1 f2=n rei® 1z 0
- Zlog +E/0 Re (reT—z) log|f(re'?)|d8,

where {z1,--- ,zn } are the zeros of fin 0 < |w| < r.
If u is a bounded (complex-valued) harmonic function on the entire complex
plane, then # must be constant.

1
Z{mnel,m62}<

ZkZ
r(z—z)

. Show that

if and only if p > 1.

. Suppose rZ* = { @, } is any square lattice and R is any other positive radius.

Show that there exists a positive constant C = C(r,R) such that

>/ fue<c] foa

for all nonnegative functions f on C. Here dA is area measure.

Verify that H with the operation defined in Sect. 1.5 is indeed a group.
Show that the Heisenberg group is nonabelian.

Show that p; < p. See Sect. 1.1 for definitions of these numbers.
Suppose f is entire, 0 < p < o, and 0 < R < eo. Show that

[ Ir@raae) <
J|z|>R

if and only if f is identically zero.
Show that both X and D are self-adjoint operators on L? (IR, dx).

. Justify every interchange of the order of integration in the proof of

Theorem 1.23.

Discuss the continuity of the Schrédinger representation, namely, the unitary
representation of the Heisenberg group given in Theorem 1.29.

Show that for any lattice A = { @y, }, we have

1
S <
* | @ |P

if and only if p > 2, where the summation is to exclude the possible occurrence
of 0 in the denominator.

Prove the commutation relation (1.19).

Convince yourself that the formal identity (1.28) is equivalent to the Fourier
inversion formula.
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Fock Spaces

In this chapter, we define Fock spaces and prove basic properties about them.
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2.1 Basic Properties

For any positive parameter ¢, we consider the Gaussian measure

dhale) = Ze " aAG)

where dA is the Euclidean area measure on the complex plane. A calculation with
polar coordinates shows that dA, is a probability measure.

The Fock space F2 consists of all entire functions f in L?(C,dAy). It is easy
to show that F2 is a closed subspace of L?(C,dA). Consequently, F is a Hilbert
space with the following inner product inherited from L?(C,dA):

8o = [ S5 dhalo)

Proposition 2.1. For any nonnegative integer n, let

an
€n (Z) = 7 7"

Then the set {e,} is an orthonormal basis for F2.

Proof. A calculation with polar coordinates shows that {e,} is an orthonormal set.
Given f € F2 and n > 0, we have

(f,en)o = lim ‘ f(2) en(z) dAg(2).

R—eo JIz|<R
Since the Taylor series
(z) = 2 akzk
k=0

converges uniformly on |z| < R, we have

F(2)en(@) dAl(z) = Sa /IZKRzkmd)La(z).

J)z|<R

Using polar coordinates again, we obtain

(fren)a = lim ay /\z|<RZ (@) dhalz )—a,,/cz (D) d2a(2).

R—oo

Therefore, the condition that (f,e,) = 0 for all n > 0 implies that a,, = 0 for all
n > 0 which in turn implies that f = 0. This shows that the system {e, } is complete
in F2. O
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As a consequence of the above proposition, the Taylor series of every function f
in F2 converges to f in the norm topology of F2.

For any fixed w € C, the mapping f — f(w) is a bounded linear functional on
F2. This follows easily from the mean value theorem. By the Riesz representation
theorem in functional analysis, there exists a unique function K,, in F2 such that
fw) = (f,Ky)q for all f € F2. The function Kq(z,w) = K, (z) is called the
reproducing kernel of F2.

Proposition 2.2. The reproducing kernel of F2 is given by
Ko (z,w) = e*", zw e C.
Proof. For any f € F2, we have
£0) = (fcoda = [ F(2)dha(2).
Fix any w € C and replace f(z) by f(w —z). We obtain
_“ e ga
7o) = % [ 1w=2e"F aa()
= 2 [ et aac)
T JC
_ ef(x|W|2/ f(z)e(sz+(XZw d)va(Z)-
C
Replace f(z) by f(z)e”*". The result is
10 = [ £ aha(c).

The desired result then follows from the uniqueness in Riesz representation. a

Recall that every closed subspace X of a Hilbert space H uniquely determines an
orthogonal projection P : H — X.

Corollary 2.3. The orthogonal projection
Py : L*(C,dAy) — F2
is an integral operator. More specifically,
Paf (2) = [ Ka(zw) () d2a ()

forall f € [*(C,dAy) and all z € C.
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Proof. Fix f € L*(C,dA) and z € C. We have

Paf() <Paf7 >a—<f7pa >a:<f7Kz>a

= [ FO0Kalc) 4202
This proves the integral representation for Py,. a
For any z € C, we let
k(w) = Se0D) _ o
Ko (z,2)

denote the normalized reproducing kernel at z. Each k; is a unit vector in F2. The
following change of variables formula will be used many times later in the book.

Corollary 2.4. Suppose f >0 or f € L' (C,dAq). Then for any z € C, we have

LAz w)dratn) = [ FOlkw)Pdalw)

and

LB =k 00) 2 dAaw) = [ 700)da (o

Proof. Tt is clear that
/(Cf(ZiW) Ao (w) = %/Cf@iw)e*“'W'zdmw
2 [rowe P aaw)

:/Cf(w)e—a\zleraZerazwd/’La(w)

= [0 o) P ().
The assumption that f > 0 or f € L'(C,dAq) ensures that all integrals above make

sense. The proof of the other identity is similar. O

Corollary 2.5. Suppose o« > 0 and B is real. Then

(e

Mg (z) = eP?lal /4

foralla e C.
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Proof. Tt follows from the definition of the reproducing kernel that
Ky(a,a) = [C |Ke(a,2)[* dAq/(2), aeC.

Replacing a by Ba/(2c), we obtain the desired result. O

For a2 > 0 and p > 0, we use the notation L}, to denote the space of Lebesgue
measurable functions f on C such that the function f (z)e’alz‘z/ 2 isin LP(C,dA).
For f € L}, we write

Il =22 [ |r@e |

dA(z). 2.1

Similarly, for o > 0 and p = oo, we use the notation L, to denote the space of
Lebesgue measurable functions f on C such that

[ lle = esssup {|f(2)|e 2z Cf < oo (22)

Obviously, we have Lt = LP(C,dA,q)2) for 0 < p < eo. But Ly, # L”(C,dA).
When 1 < p < oo, L}, is a Banach space with the norm || f|| ... When 0 < p <1, L}
is a complete metric space with the distance d(f,g) = ||/ — 8|/} «

For o« > 0 and 0 < p < = we let F} denote the space of entire functions in
L}, We will call F§ Fock spaces. It is elementary to show that FZ is closed in L.
Therefore, F{ is a Banach space when 1 < p < oo, and it is a complete metric space
when 0 < p < 1.

Note that the measure associated with the Fock space Ff, dA e /2, depends on
both o and p. This is a bit unusual and unnatural at first glance, but there are
underlying reasons why Fock spaces should be defined this way, and plenty of
past experience suggests that this way of defining the Fock spaces will make the
statement of many results a lot easier and a lot more natural.

Lemma 2.6. Suppose o« > 0, { € C— {0}, and 0 < p < oo. Then the dilation
operator f(z) — f(Cz) is an isometry from L}, onto Llpg\za’ and it is an isometry

from FY onto F\ZIZ

Proof. This follows from a simple change of variables. O

The following result gives the optimal rate of growth for functions in Fock
spaces.

Theorem 2.7. For any 0 < p < and z € C, we have

sup{|£2)] : || puee < 1} = /2.
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Furthermore, for 0 < p < oo, any extremal function is of the form:
Zw— 5 |22 +i6
flw) = e 3R,

where 0 is a real number.

Proof. We first assume that 0 < p < co.
The case z = 0 follows from the subharmonicity of the function |f|” and
integration in polar coordinates:

o |P

1O < 22 [ rme 5| aawm) = £l

-2

Equality occurs if and only if f is constant.
More generally, for any z € C and f € F}, we consider the function

F(w)=f(z— w)eawz*(“k‘z/z).

From the inequality |[F(0)[? < ||F||} o we deduce that

F@re o2 < B2 [ | e —wpere ok 2o 2 da )

- %/«: f(Z—w)e*a\szF/z‘ﬂdA(w)

= 22 [ Jromeerr)" aawm)

= [I71

p
p,o-
This shows that

9?2,

If @) <]

Furthermore, equality is attained if and only if F is constant. This shows that the
extremal functions are of the form

f(W) _ eawa(alz\2/2)+i9.
This proves the desired results for 0 < p < .

If p = oo, it follows from the definition of ||f|jw.q that |£(z)| < e®F/2 for all £
With || f||e,ec < 1. Therefore,

Sup{| £ (2)] : || /]| < 1} < e¥<F72,
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On the other hand, the function f(w) = k;(w) is a unit vector in Fy and k;(z) =
e®2/2 Thus, we actually have

sup{|£(2)] ¢ || fllooce < 1} = e®I*/2,

This proves the case for p = eo. a

When p = oo, the extremal functions in Theorem 2.7 consist of more than
constant multiples of reproducing kernels. For example, if f is any polynomial
normalized so that || | ¢ = 1, then

1 =sup|f(z)|e *F/2 = | f(z9)|e*F0l*/2

zeC

for some zy € C because in this case we have

lim f(z)e "2 = 0.

Z—ro0

Therefore, this polynomial f is an extremal function for the extremal problem in
Theorem 2.7 when p = e and z = 7.

Corollary 2.8. Let f € FY and 0 < p < oo. Then

@] < [1£]l .o/

for all z € C and the estimate is sharp.

When 0 < p < oo, the estimate above can be somewhat improved. More
specifically, we can actually show that

lim f(z)e **/2 =0

70
for every function f € Ff. This will follow from the next proposition.
Proposition 2.9. Suppose 0 < p < o, f € Ff, and f,(z) = f(rz). Then:

(@) ||fr—fllpa—0asr—1".
(b) There is a sequence {p,} of polynomials such that ||py — f|| . — 0 as n — oo.

Proof. Suppose {g,} and g are functions in L”(X,dut) such that
gn(x) — g(x), n— oo,

almost everywhere. Then it is well known that

n—

tim [ Ig.  gl”du =0
*JX
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if and only if

i [ o Py — P

tim [ [l du = [ 1ol du.
This is a simple consequence of Fatou’s lemma; see Lemma 3.17 of [119] for
example. Given f € F}, we have

Ifellpo = %/«; ‘f(rz)e’“k‘z/z’p dA(z)

_ 217’32 /C ‘ f(z)efalzwz/z"’efpa\zl%rfzfl)/sz(z).

Since
e PP =/2

for all z € C and 0 < r < 1, an application of the dominated convergence theorem
shows that || f+||p,« = || f|lp,e» and hence || f — f]|p,« — 0 as r — 17. This proves
part (a).

Part (b) follows from part (a) if we can show that for every r € (0, 1), the function
f» can be approximated by its Taylor polynomials in the norm topology of F.
To this end, we fix some r € (0,1) and fix some 8 € (r*a, ). It follows from
Corollary 2.8 that f, € Fg. Similarly, it follows from Corollary 2.8 that Fﬁ2 CF}

and there exists a positive constant C such that [[g||,.« < Cl[g|l»,p for all g € Fﬁ2
Now, if p, is the nth Taylor polynomial of f,, then by Proposition 2.1,

Hfr _pn|

po < C”fr_anZﬁ —0

as n — oo. This proves part (b). O

Let fg denote the space of entire functions f(z) such that

lim f(z)e "2 = 0.

Fandad

Obviously, f,; is a closed subspace of F;’. In fact, f;; is the closure in F; of the set
of all polynomials. Thus, the space f;; is separable while the space F,; is not.

Theorem 2.10. If0 < p < g < oo, then F}) C F, and the inclusion is proper and
continuous. Moreover, F; C fz, and the inclusion is proper and continuous.

Proof. For any entire function f, we consider the integral

7l = 5 [ 1@ 2aaa )
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It follows from the pointwise estimate in Corollary 2.8 that

HfIIZ,a = %/c |f(Z)|P|f(z)|quefqa\z|2/2dA(Z)

IN

qo - —alsl?
N8 [ r@lre R aac)

= L5
p

q
p,a-

This shows that Ff C Fg with || f]|g.o < (q/p)" || f]| p.« for all £ € Ff.

To see that the inclusion F C FJ is proper, let us assume that F = F;]. Then the
identity map I : F§ — F, is bounded, one-to-one, and onto. By the open mapping
theorem, there must exist a constant C > 0 such that

C ISl pe < NI

g0 <C|fllpa

for all £ € F}. On the other hand, a computation with Stirling’s formula shows that

||Z”||;’:,a ap/o PP [2, 4

(&) ()

AN

oe

Thus,
Ny~ ()"
e~ ()" n.
and similarly,

n\n/2 1
g0~ — n.

12|
oe

It is then obvious that there is no positive constant C with the property that
~1
C " p.e < 112" lg.00 < ClI2" [l p.ox

for all n. This contradiction shows that the inclusion F; C F must be proper.

To show that Fy C f;, observe that for every polynomial f, we have f € fi, and
it follows from Corollary 2.8 that || f||e ¢ < || f|| p,- The desired result then follows
from the density of polynomials in F£, the boundedness of the inclusion F}, C F7,
and the fact that f; is closed in F;.
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Finally, by elementary calculations,

[ = ()",

oe

Another appeal to the open mapping theorem then shows that the inclusion F} C fi
is proper. a

The next result gives another useful dense subset of F_.

Lemma 2.11. For any positive parameters o and Y, the set of functions of the form

n n
@)=Y ciky(z,wi) = Y, cxe?™,
k=1

k=1

is dense in Fl) and fg, where 0 < p < .

Proof. Since the points wy are arbitrary, we may assume that y = o.

The result is obvious when p = 2. In fact, if a function /4 in Fa2 is orthogonal to
each function f(z) = Ko(z,w), then h(w) = 0 for every w.

In general, with the help of Corollary 2.8, we can find a positive parameter 3
such that Fg C F§ continuously, say || f]|,.a < C||f]|,, for all f e FB2 In fact, any
B € (0,a) works. Now, if f is a polynomial and {wy,---,w,} are points in the
complex plane, then

n n
If = kKo (zwi)llp.a < CIIfF = Y, ciKal(z,wi) |2,
=1 k=1

=C|f- 2 cxKp(z, awi/B)|2,p-

k=1
Combining this with the density of the functions }_, c;Kg(z,u) in FﬁZ, we
conclude that every polynomial can be approximated in the norm topology of Ff
by functions of the form Y}, ¢xKq(z,wy). Since the polynomials are dense in Fp,

we have proved the result for FL, 0 < p < oo,
The proof for f; is similar. a

Finally, in this section, as a consequence of the pointwise estimates, we establish
the maximum order and type for functions in the Fock spaces.

Theorem 2.12. Let f € FL with 0 < p < . Then f is of order less than or equal
to 2. When f is of order 2, it must be of type less than or equal to o./2.

Proof. By Corollary 2.8, there exists a positive constant C such that

£ (2)] < Ce®lF/?
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for all z € C. In particular, M(r) < Ce®”/2 for all r > 0. It follows that the order p
of f satisfies

loglogM
p = limsup g0\ (r) <
oo logr

Also, if the order of f is actually 2, then its type o satisfies

logM
o= hmsupog—z(r) < g’
r—yoo r 2

completing the proof of the theorem. a
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2.2 Some Integral Operators

In this section, we consider the boundedness of certain integral operators on L”
spaces associated with Gaussian measures. More specifically, for any o > 0, we
consider the integral operators Py and Q, defined by

Paf(2) / Ka(z,w) £ () dAg (W), 2.3)

and
0uf(2) / Ko (2, )| £ () dAg (), (2.4)

respectively.
We need two well-known results from the theory of integral operators. The first
one concerns the adjoint of a bounded integral operator.

Lemma 2.13. Suppose | < p <eand 1/p+1/q= 1. If an integral operator

= [ HE)f0)auE)
is bounded on LP (X ,dL), then its adjoint
T L(X,du) — LY9(X ,du)

is the integral operator given by

_ /X HO0) () du ().

Proof. This is a standard result in real analysis. See [113] for example. a

The second result is a useful criterion for the boundedness of integral operators
on L? spaces, which is usually referred to as Schur’s test.

Lemma 2.14. Suppose H(x,y) is a positive kernel and

- /X H(x,y)f(y)du(y)

is the associated integral operator. Let 1 < p < e with 1/p+1/q= 1. If there exist
a positive function h(x) and positive constants Cy and C, such that

/ny M7du(y) <Cih(x)?,  xeX,
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and
JHEDM" du) < ChGY. yeX,

then the operator T is bounded on LP (X ,dpt). Moreover, the norm of T on LP (X ,dy)
does not exceed Cll/qul/p.

Proof. See [250] for example. a

We now consider the action of the operators Py and Q¢ on the space L”(C,dAg).
Thus, we fix two positive parameters ¢ and 3 for the rest of this section and rewrite
the integral operators Py, and Q, as follows:

Puf(@) = e PP o) adg o),

and
Ouf (@) = [ IO =F | o)y o)

It follows from Lemma 2.13 that the adjoint of Py and Q, with respect to the integral
pairing

fglp = [ S@8E (2

is given, respectively, by

Pof(2) = @)l / % £ (w)dAg (w), (2.5)

and
* o —o z2 ozw
0;uf (@) = e~ /C %57 | £(w) dA (w). 2.6)

We first prove several necessary conditions for the operator P, to be bounded on
LP(C,dAg).

Lemma 2.15. Suppose 0 < p < o, o« > 0, and B > 0. If Py is bounded on
LP(C,dAg), then poe <23 and p > 1.

Proof. Consider functions of the following form:
fx,k(Z) = e*x\ZIZZk, z€C,

where x > 0 and k is a positive integer. We have

B B aa B T((pk/2) 4 1)
/([:|fx,k|Pd;LB—;/C|Z|pke (px+B)lzl dA(Z)_px-i-ﬁ (px—i—ﬁ)”"/z .
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On the other hand, it follows from the reproducing formula in F2 . that

o

Poc(fx,k)(Z) = ;/Ceazwwke*(aﬂ)lwlsz(w)

o

- /C elotoloe/ (@7, K ga ()

o oz k o 1+k .
= = Z
o+x \o+x o+x

Therefore,

o p(1+k) .
p — p
L IPathiil a2y (a H) L ans @)

(o NI ((pk/2) + 1)
_<a+x) prkiz

Now, if the integral operator Py is bounded on L”(C,dAg), then there exists a
positive constant C (independent of x and k) such that

B T((pk/2)+1)
px+B (px+ )Pt/

p(1+k) 1+(pk/2)
() =(m)
o+x B+ px

Fix any x > 0 and look at what happens in the above inequality when k — oo. We

deduce that X
o < B .
o+x B+ px

Cross multiply and simplify. The result is

<C

( o )p(”k) r((pk/2)+1)

o+x ﬁpk/2

or

po <20 + Bx.

Let x — 0. Then po® < 2a, or por < 2f3.
Similarly, if we let k = 0 and let x — oo in the previous paragraph, the result is
p > 1. This completes the proof of the lemma. O

Since the operator Py (and hence Q) is never bounded on L”(C,dAg) when
0 < p < 1, we need only focus on the case p > 1.

Lemma 2.16. Suppose | < p < oo and Py, is bounded on LP(C,dAg). Then po > B.



46 2 Fock Spaces

Proof. 1f p > 1 and Py is bounded on L”(C,dAg ), then Py, is bounded on L7(C,dAg),
where 1/p+ 1/q = 1. Applying the formula for P, from (2.5) to the constant

function f = 1 shows that the function e(f~ 0l s in L1(C,dAg). From this, we
deduce that

q(B—a) <B,
which is easily seen to be equivalent to f < pa. ad

Lemma 2.17. If Py is bounded on L'(C,dAg), then oo = 2.

Proof. Fix any a € C and consider the function

eOCle

fa(Z)=W7 zeC.

Obviously, || f4||« = 1 for every a € C. On the other hand, it follows from (2.5) and
Corollary 2.5 that

Pifa)(a) = el [ 1o |z )

_ & (B-a)aPalal/(4B)

Since P;, is bounded on L (C), there exists a positive constant C such that

o —o)lal?_o2lal? "
Ee(ﬁ D@l /4B) < || P (£}l < C|l full = C

for all a € C. This clearly implies that

ﬁ—OC-F—ﬁSO

which is equivalent to (28 — o)? < 0. Therefore, we have o = 2f3. O

Lemma 2.18. Suppose | < p <2 and Py is bounded on L (C,dAg). Then poc =23.

Proof. Once again, we consider functions of the form

2
fx,k(z) = e*X‘Z| Zk, P= (C,

where x > 0 and k is a positive integer. It follows from (2.5) and the reproducing
property in F, +x that

P;(fxyk)(z) = %e(ﬁfa)‘dz/(.:e“mwke*(ﬁﬂ)lwpdA(W)
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a)|z? / (B+x)[oz/(B+x)w kd?tﬂ+x( )

k
_ % pak? (&)
B+x B+x

1+k
() Bl
B+x

Suppose 1 < p <2 and 1/p+ 1/q = 1. If the operator Py is bounded on
LP(C,dAg), then the operator Py, is bounded on L¢(C,dAg). So there exists a positive
constant C, independent of x and k, such that

LIpatrtarg <C [ 1fialdrg.

We have

I'((gk/2)+1
/ | fexl?dAg = P ((gk/2) k/2)'
Jc gx+PB (gx+B)4
On the other hand, it follows from Lemma 2.16 and its proof that

B—a(f-a)>0

so the integral

1= 1B dzg

can be evaluated as follows:

I (ﬁﬂ) v B/lzl‘*k ~B-a(B- ) ga )

q(1+k)
- (ﬁ?—x) [3—6153—06) /<c|z|qkdkﬁ*q(l3*a)(z)

_< o )q“*") B I((gk/2)+1)
~\B+x B—a(B—a) (B—q(B—a))#2’

Therefore,

( o )‘f“*“ p I'((gk/2)+1)
B+x B—aq(B—a)(B—q(B—o)?
is less than or equal to

CB_I'((gk/2)+1)
B (qr BT
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which easily reduces to

(ﬁix)q(lm <cC (%ﬁq;a)) 1+(qk/2) |

Once again, fix x > 0 and let k — . We find out that

(55) <"

Using the relation 1/p+ 1/g = 1, we can change the right-hand side above to

po— P
(p—1)B+px

It follows that
o’ (p—1)B+o’px < (por— B) (B> +2Bx+x°),
which can be written as
(poc = B)* + 2B (por—B) — o plx+ B (po — B) — o *(p — 1)B > 0.

Let g(x) denote the quadratic function on the left-hand side of the above inequality.
Since pa — B > 0 by Lemma 2.16, the function ¢(x) attains its minimum value at

. pa —2B(pa—B)
0 2(poc—B)

Since 2 > p, the numerator above is greater than or equal to

pa® —2paf + pp* = p(o—B)>.

It follows that xo > 0 and so h(x) > h(xg) > 0 for all real x (not just nonnegative x).
From this, we deduce that the discriminant of /(x) cannot be positive. Therefore,

2B(poc—B) — por’* —4(pa— B)[B*(por— B) — o*(p — 1)B] < 0.
Elementary calculations reveal that the above inequality is equivalent to
(po—2B)* <0.

Therefore, pa. = 23. O
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Lemma 2.19. Suppose 2 < p < o and Py is bounded on LP(C,dAg). Then
po.=2p0.

Proof. 1f Py is a bounded operator on L”(C,dAg), then Py, is also bounded on
Li(C,dAg), where 1 < g <2and 1/p+1/q= 1.1t follows from (2.5) that there
exists a positive constant C, independent of f, such that

J

is less than or equal to

q
e(ﬁfa)\z\zlceazw [f(w)e(a*B”WF} dka(w)' dlﬁ(@

¢ [[1row)azg()

where f is any function in L7(C,dAg). Let

f(2) = glz)eP-lP

where g € LY(C,dAg_4(g—q))- Recall from Lemma 2.16 that

B—a(B—a)>0.

We obtain another positive constant C (independent of g) such that

/(C|Pag|qdkﬁfq(ﬂfa)SC/C|g|qd/,Lﬁfq(ﬂfa)»

forall g € LI(C,dAg_4(g—a))- So the operator Py is bounded on LI(C,dAg_,(5_))-
Since 1 < g < 2, it follows from Lemma 2.18 that

qo=2[B —q(B - a)].

It is easy to check that this is equivalent to poc = 23. O

We now prove the main result of this section. Recall that Py and Q, are never
bounded on LP(C,dAg) when 0 < p < 1.

Theorem 2.20. Suppose oo > 0, B >0, and 1 < p < oo. Then the following
conditions are equivalent:

(a) The operator Qg is bounded on LP(C,dAg).
(b) The operator Py is bounded on LP(C,dAg).
(¢) The weight parameters satisfy po. = 2J3.

Proof. When p = 1, that (b) implies (c) follows from Lemma 2.17, that (c) implies
(a) follows from Fubini’s theorem and Corollary 2.5, and that (a) implies (b) is
obvious.
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When 1 < p < oo, that (b) implies (c) follows from Lemmas 2.18 and 2.19, and
that (a) implies (b) is still obvious.

So we assume 1 < p < oo and proceed to show that condition (c) implies (a). We
do this with the help of Schur’s test (Lemma 2.14).

Let 1/p+1/q =1 and consider the positive function

h(z) = e‘ﬂz'z, z€C,
where § is a constant to be specified later.
Recall that
0uf(2) / H(z,w) £ (w) dAg (w),
where

H(Z, W) = %|eazwe(3*a)|w|2|

is a positive kernel. We first consider the integrals

/sz wldAg(w), zeC.

If 6 satisfies
o> gd, 2.7)

then it follows from Corollary 2.5 that

I(z) = %/C|eo‘zw|ef(aqu)|wlsz(w)

o _
= [ 15150

o—qdb Jc
__* o/4(a—q8)
o—qgd
If we choose 8 so that 5
o
=40, (2.8)
(—qd)
then we obtain
o
H( w)?d h(z)? 2.
L H ) ang () < o en(c) 29)

forall z € C.
We now consider the integrals

/sz PdAgz),  weC.

If 6 satisfies
B—pd=>0, (2.10)
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then it follows from Corollary 2.5 that

[3 /| oz, *O‘)‘W‘2|h(z)”dlﬁ(z)

- IWIQ/ %% e~ (B=PO)P ga ()

7'E
__® (B-a)lwP a?w]?/4(B—pd)
= c c
B—pé
=3 o 5e[(Bfa)+a2/4(pr5)]IWI2.
—P
If we choose & so that
2
o
Pt =0y~ 7% @40
then we obtain
/sz ) as() < 5 O‘p5 (w)? (2.12)

for all w € C. In view of Schur’s test and the estimates in (2.9) and (2.12), we
conclude that the operator Qy would be bounded on L”(C,dAg) provided that
we could choose a real 0 to satisfy conditions (2.7), (2.8), (2.10), and (2.11)
simultaneously.

Under our assumption that poc = 2f3, it is easy to verify that condition (2.8) is
the same as condition (2.11). In fact, we can explicitly solve for g6 and pd in (2.8)
and (2.11), respectively, to obtain

o _2B-«
q5—5, po = >

The relations pot =2f3 and 1/p+1/g =1 clearly imply that the two resulting ’s
above are consistent, namely,

(2.13)

Also, it is easy to see that the above choice of 0 satisfies both (2.7) and (2.10). This
completes the proof of the theorem. O

Theorem 2.21. [f1 < p < oo and po. =28, then

\P, fIPdA </ Pdp <2P/ Pdp
/(c|ocf| ﬂ_C|Q(xf| p < 'lel B

forall f € LP(C,dAg).
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Proof. With the choice of & in (2.13), the constants in (2.9) and (2.12) both reduce
to 2. Therefore, Schur’s test tells us that, in the case when 1 < p < eo, the norm of
Qg on L7(C,dAg) does not exceed 2.

When p = 1, the desired estimate follows from Fubini’s theorem and
Corollary 2.5. O

Corollary 2.22. For any o > 0 and 1 < p < oo, the operator Py is a bounded
projection from Ly onto Ff. Furthermore, ||Po.f p.a < 2||f|| p.o for all f € L.

Proof. The case 1 < p < oo follows from Theorem 2.21. The case p = oo follows
from Corollary 2.5. a
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2.3 Duality of Fock Spaces

It follows easily from the usual duality of L? spaces that for any 1 < p < oo, we have
(Lh)* = ﬂ’ where 1/p+1/¢g =1, o and 3 are any positive parameters, and the
duality pairing is given by

=1 [ 1s@e 7 aA().

Here, y = (o + B)/2 is the arithmetic mean of o and f3.

In this section, we are going to identify all bounded linear functionals on the Fock
space FJ/, where 0 < p < eo. We will also do the same for the space f;. Somewhat
surprisingly, the duality of Fock spaces depends on the geometric mean of ¢ and 3
instead of their arithmetic mean. Let us begin with the case p > 1.

Theorem 2.23. Suppose B >0,1< p <o, and1/p+1/q= 1. Then the dual space
of FY can be identified with Fﬁq under the integral pairing

()= fim | S@s@e " aaG),

where Yy =1/ a3 is the geometric mean of o and f.

Proof. First, assume that g € F, ﬁq and F is defined by

FU)=fim 2 [ S@s@Ee ).

We proceed to show that F gives rise to a bounded linear functional on F. To avoid
the use of limits all over the place, we appeal to Lemma 2.11 and further assume
that g is a finite linear combination of kernel functions.

If f(z) = e” for some a € C, then by the reproducing property of the kernel
functions Ky(z,w) and Ky (z,w), we have

- %/@TZ)g(Z)e*W'Z dA(z),

(V)
= & [ ety ( \/%Z) el 4a(2)
= %/Cmg <\/%z) ek dA ().

and

o
—~
S
~—
I
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[rnwn=2 [rn(fT)eane.

This shows that

Fi) =2 [ e (ﬁz) el dA (2
- _/ -4z {g (\/%z> e‘z’ZIZ] dA(z)

for all functions f of the form

Therefore,

N —
= 2 Ckeyzak,
k=1

which are dense in F, by Lemma 2.11.
It is clear that g € L% is equivalent to the condition that

¢(x) =g(Va/Bz) € L.
An application of Holder’s inequality then gives

IFNI<Clflpall@llge=C (2.15)

where f is any finite linear combination of kernel functions, and C and C’ are
positive constants. This shows that F defines a bounded linear functional on FJ.

Next, assume that F : FO’Z — C is a bounded linear functional. Define a function
g on the complex plane by

§) = (e).
It is easy to show that g is entire. We are going to show that g € Fg and F(f) =
(f.g)y for all f in a dense subset of F},.
To show that g € Fg, we need to show that the function g(w)e’mww2 is in
L7(C,dA). To this end, we consider the integrals

/h e PP 24A(w),  helLP(C,dA).

It suffices for us to show that @ defines a bounded linear functional on the space
LP(C,dA). Without loss of generality, we may assume that 4z has compact support
in C. In this case, the integral

/ h(w)e e B2 44 ()
JC
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converges in the norm topology of FY, and we have

/ h(w)F, () e BIF/2 A (w)
_F ( /C h(w)eyzweﬁwz/sz(w)>
([

where

0(2) —h<\/%z) o3I,

Since i € LP(C,dA) is equivalent to ¢ € L}, and since the projection Py, maps L},
boundedly into F}, we conclude that

|@(h)] < ﬁIIFHHPa( ?)llp.o <Al
where ||h|| denotes the usual norm in L”(C,dA). This shows that the function g is
in .
B

Finally, if f(z) = e"** for some a € C, then by the remarks immediately following
this proof and the reproducing property in F2,

gy =Jim T [ s T aa) = 5@ = F (1)

It follows that F(f) = (f,g)y whenever f is a finite linear combination of kernel
functions. This, along with Lemma 2.11, finishes the proof of the theorem. O

Note that (2.14) was proved under the assumption that both f and g are finite
linear combinations of kernel functions. By (2.15), the right-hand side of (2.14)
converges forall f € F} and g € Fg, and the integral is dominated by || f1| .« lgll4.5-
An approximation argument with the help of Lemma 2.11 then shows that

fim [ SQISE 2@ d2y(2) / 7(2) (\/7 )d/xa() (2.16)

for all f € F} and g € Fﬁq . In particular, the limit on the left-hand side of (2.16)

exists forall f € FY and g € Fg

Alternatively, the identity in (2.16) can be proved with the help of Taylor
expansions. Details are left to the interested reader. We now consider the case of
small exponents.
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Theorem 2.24. Suppose 0 < p < 1 and B > 0. Then the dual space of F} can be
identified with FE" under the integral pairing

<ﬁ>y—ggl ﬁﬂﬂ@ﬂ) P da(),

where Y = \/ o3 and the limit above always exists.

Proof. First, assume that ¢ € F* and F is defined by F (f) = (f,8)y- To show that
F extends to a bounded linear functional on FZ, we use (2.16) to rewrite

F(f) =2 / 1@ ()

where

M@—g< %O

is in F;. It follows from this and the embedding in Theorem 2.10 (and its proof)
that

[F()l <

So F extends to a bounded linear functional on F}, and an approximation argument
shows that the limit in the statement of the theorem always exists.

Next, suppose that F is a bounded linear functional on FJ. As in the proof of
Theorem 2.23, we consider the function g defined on C by

g(w) =F; ().

It follows from the boundedness of F on F; and the integral formula in Corollary 2.5
that

lg(w)l?

I /\

pOCHFH /|eyzw —az? /2|pdA( )
F

pOCH H /| pyzw| 7pa\z|2/2dA()

- ||F|‘pepﬁ\W\ /2,

This shows that g € Fji* with |[g]|.. g < [|F].
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Finally, as in the proof of Theorem 2.23, we have F(f) = (f, g)y for all functions
f of the form

N —
fz) = 2 cpe .
k=1

Since the set of functions of the above form is dense in FO’Z , we have completed the
proof of the theorem. O

Setting B = o in Theorems 2.23 and 2.24, we obtain the following special case.

Corollary 2.25. If 1 < p < oo, then the dual space of F} can be identified with F
under the integral pairing (f,g)q, where 1/p+1/g=1.1If 0 < p < 1, then the dual
space of Flj can be identified with F, under the integral pairing (f,g)o.

It is interesting to observe that under the same integral pairing (f,g)q, the dual
space of each FO’Z ,0 < p <1, can be identified with the same space F,;. This differs
from the traditional Hardy and Bergman space theories.

Theorem 2.26. Suppose B > 0 and y = /3. Then the dual space of f;; can be
identified with FB1 under the integral pairing (f,g)y-

Proof. 1f g € Fﬂl, then by Theorem 2.24, F(f) = (f,g)y defines a bounded linear
functional on fi;.

Now, suppose F is any bounded linear functional on f;;. Since the set of finite
linear combinations of kernel functions is dense in f; (but not in F,’), we can
proceed as in the proof of Theorem 2.23 to obtain

FUY=fim L[ SO0e ™ aaw)

for f in a dense subset of f,;, where

It remains for us to show that g € FB1

Since the dual space of FB1 is identified with F;” under the integral pairing (f,g)y,
it suffices to show that there exists a constant C > 0 such that

Ifs 80yl < Cllflloo,r

for all f € F;;. For any positive integer n, consider the function:

fn(z)—f(nj_lz), zeC.
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It is clear that f € F implies that each f,, € fiy with || fy]|ee.ac < || f|loe,e for all n.
Now,

<f7g>y = 1%1330% |w|<Rf(W)FZ (eYZW) e*V\W\z dA(w)

—1im lim L [ f,(w)F (e7) e dA(w)

n—yeoR—eo T J || <R

= limF [Z / Fu(w)ee M qa (w)
TJC

n—yoo

= lim F(f,).

n—soo

Since |F(fu)| < |F|[|fulloe,oc < [|F ||| f]]es,e for all n, we conclude that |(f,g)y| <

|F||]| flloo,e for all f € Fg. This shows that g € Fﬁ1 and completes the proof of the
theorem. ad
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2.4 Complex Interpolation

We assume that the reader is familiar with the basic theory of complex interpolation,
including the complex interpolation of L” spaces. The book [250] provides an
elementary introduction to the subject. We will begin with the following well-known
interpolation theorem of Stein and Weiss.

Theorem 2.27. Suppose w, wy, and wy are positive weight functions on the complex
plane. If 1 < pg < p; <eoand0< 0 < 1, then

[LP°(C,wodA),LP' (C,w1dA)]g = LP(C,wdA)

with equal norms, where

P po P

This result is very useful and widely known. See [216] for a proof.

Recall that L}, is the space of Lebesgue measurable functions f on the complex
plane such that the function f(z)e""mz/2 is in L”(C,dA). The norm of f in L,
was defined in Sect. 2.1. With the inherited norm, F, is the closed subspace of L},
consisting of entire functions.

Specializing to exponential weights, we obtain the following special case of the
Stein—Weiss interpolation theorem.

Corollary 2.28. Suppose 1 < pg < p1 < oo and 0 < 0 < 1. Then for any positive
weight parameters 0y and o, we have

[L%»Lgi]e =L,

where

1 1-6 6

~ = +—, o=o0p(l—6)+oyb.

p Po p1
Proof. Since Lb, = L? (C,dApq/2), it follows from the Stein—Weiss interpolation
theorem that

[Lgt(l) 7L5612:| 2] = [LPU ((j?dz’poa] /2)7Lpl ((C7 dlplaz/z):l 2]
= Lp((cvdlp(x/l) = Lgh

where

1 1-6 6
~ = +—, o=o0p(l—6)+oyb.
p po P1

This proves the desired result. a
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Although FJ is a closed subspace of L%, the Fock spaces interpolate in a way
that is much different from the containing spaces L%,. In some sense, the Lebesgue
spaces L}, interpolate “arithmetically,” while the Fock spaces F, interpolate “geo-
metrically.” We begin with the case when the weight parameter « is fixed.

Theorem 2.29. Suppose 1 < py < p; <ooand0< 0 < 1. Then
[F&* 3|y = Fa,

where
1 1-6 6

p Po P1

Proof. The inclusion
[F§° Fi'), C FE

follows from the definition of complex interpolation, the fact that each F}* is a
closed subspace of Ly, and the fact that [Lg?, Ly ], = LG,

On the other hand, if f € Ff C L}, then f is entire, and it follows from
Ly, L5 |, = Lt that there exist a function F(z,{) (z€ Cand 0 <Re{ < 1)and a
positive constant C such that:

(@) F(z,0) = f(z) forall z e C.

®) [|F(-,8)lpp,0 <C forallRel =0.
© |F(-,8)|lp,a <CforallRef =1.

Define a function G(z,{) by

G(z,0) = %/;F(W’C)eazwefoc\w\sz(w)'

Then it follows from Corollary 2.22 that:

(@) G(z,0) = f(2).
(®) |G(-,8)|lpg,e <2C forallRe{ =0.
©) [|G(-,8)|lp,« <2CforallRed =1.

Since each function z — G(z,{) is entire, we conclude that f € [F°,F}']g. This
completes the proof of the theorem. O

We now consider the case when there are different weight parameters present.
Note that o is an arithmetic mean of o and o4 in Corollary 2.28, but o is a
geometric mean of o and ¢ in the following theorem.

Theorem 2.30. Suppose 1 < py < p; < oo and 0 < 0 < 1. Then for any positive
weight parameters 0 and oy, we have

(R8P4 ]y = L.
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where

1 1-6 6
- = +—,  a=o0%].
p Po D1

Proof. For any ¢ € C, consider the dilation operator S¢ defined by

S0 =1 ((%) R z) |

According to Lemma 2.6, S¢ is an isometry from FO’;? onto F}° whenever Re { =0,
and S; is an isometry from Fg' onto F' whenever Re{ = 1. Furthermore, both

S¢f and SEI [ are analytic in { when f is analytic. Therefore, by the abstract
Stein interpolation theorem (see [215]), the operator Sp must be an isometry from
[F4Y Fi' g onto [FS°,F}']e. Since Sg = I is the identity operator, we must have

[F&’,Fé’ll]ez [Fgf",Fé’l]e:F(f,

where the last step follows from Theorem 2.29. O

As a consequence of the above interpolation theorem, we obtain the following
sharp result concerning the action of the Fock projection on L” spaces.

Theorem 2.31. Suppose 1 < p < eo. Then for any positive weight parameters o, 3,
and 7y, we have:

(a) PaLg C Fl ifand only if o* |y < 20.— B.

(b) PoLy =Fy if and only ifo?/y=20—B.

Proof. Itis easy to see that a necessary condition for PaLg C Ff , 1 < p <o, isthat
20 > B. So for the rest of the proof, we always assume that 2o > f3.

If o?/y <2a — B, it follows from Corollary 2.5 that P, maps Lg into Fy.
Similarly, it follows from Fubini’s theorem and Corollary 2.5 that P, maps L}; into
F}}. By complex interpolation, Py, maps LZ into F} forall 1 < p < eo.

If o> /y =20 — B and f € F}, then the function

e =21 (%Z> o(B-a)iP

belongs to LZ and Pyg = f. Therefore, PaLE =F} for1 < p <eo,

If o?/y > 200 — B3, then there exists some ¥ > 7 such that o?/y = 2o — 8
(here, we used the assumption that 2a; > f3). By what was proved in the previous
paragraph, Py Ll = F)f,’ . Since F} is strictly contained in F;,’ , we see that Py, cannot
possibly map Ll’; into F}. A similar argument shows that if a/y < 20t — 8, then
PaL‘E # Fy;°. This completes the proof of the theorem. O
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2.5 Atomic Decomposition

Recall from Lemma 2.11 that the set of finite linear combinations of kernel functions
is dense in FO’Z , 0 < p < eo. In this section, we improve upon this result. We show
that every function in F can actually be decomposed into an infinite series of kernel
functions.

We begin with a basic estimate for integral averages of functions in Fock spaces.

Lemma 2.32. For any positive parameters o, p, and R, there exists a positive
constant C = C(p, o, R) such that

Cwaipl? . C
fapeetr < S [ s
B(a,r)

r

(e 2| aa()

for all entire functions f, all complex numbers a, and all r € (0,R]. Here, B(a,r) is
the Euclidean disk centered at a with radius r.

Proof. Let I denote the integral above. Then
1= [ et aac)
B(a,r)
= / |f(w+a)|l’e*ﬂa\w+a|2/2dA(w)
Jlwl<r
= / |f(w+a)e*"‘wﬂl’efpa(\w\2+|a|2)/2dA(W).
Jlwl<r

Writing the integral in polar coordinates and using the subharmonicity of the
function | f(w+ a)e”*"4|P, we obtain

1> (@) / e~ PP HaP)/2 g4 ()

[w|<r

= 27| f(a)” / e pal a2 gy
JO

2
= n|f(a)e*a\“\2/2|l’/ e Pos/2 4
0

_27r

= (= P fa)e ol 2y,
p

This proves the desired estimate. O

Recall that for any positive number r,

17 = {nr+imr:n € Z,m € 7.}
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is a square lattice in the complex plane. The fundamental region of rZ?2, if we ignore
the boundary points, is the square

Sy={z=x+iy:—r/2<x<r/2,—r/2<y<r/2}.
We also consider the square
Or={z=x+iy:—r<x<n—r<y<r}.
It is clear that the complex plane admits the following decomposition:
C= U{Sr—l-z 1ZE rZz}.

Moreover, the use of half-open and half-closed squares makes the decomposition
above a disjoint union. Thus,

JRELIE

whenever f € L'(C,du). Furthermore, there exists a positive integer N such that
every point in the complex plane belongs to at most N of the squares Q, + w.

Therefore,
[rowm@< ¥ [ s@awe <N [ oawme

whenever f is a nonnegative measurable function.
Also, recall that for each a € C, the normalized reproducing kernel of FOZ{ at the
point a is given by

)= 3 | @,

werZ?

werZz?

kq (Z) = K(Z,Cl)/\/m = eOCZE*%(X|a|2'

This is of course a unit vector in F2. The following result is a pleasant surprise.
Lemma 2.33. Each k, is also a unit vector in FO’; , where 0 < p < oo,

Pmof It follows from the definition of the norm in F and the reproducing formula

in F2 . that
po [ 12| P
lkallh = 5 [ Jkafcre b

pa/2
_ po "ﬂa\a\zf
Y Jc

po 2 po 2
— 5 al” .5 |a
ZHCZII 1,

dA(z)

o —
epTza

“FaA)

=€
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which proves the desired result for 0 < p < eo. For p = o, observe that

[ko()le™ 2 = e $leel,

It follows that )
sup [kq(z)[e 2" =1,
zeC
and the proof of the lemma is complete. O

The main result of this section is the following:

Theorem 2.34. Let 0 < p < co. There exists a positive constant ro such that for any
0 < r < ry, the space F}, consists exactly of the following functions:

f@)=Y cvku(2), (2.17)

werz?

where {c,, : w € rZ*} € IP. Moreover, there exists a positive constant C (independent

of f) such that
C A llpe < inf[{ew}Hlw < ClIf .o

for all f € Ff, where the infimum is taken over all sequences {c,,} that give rise to
the decomposition (not unique) in (2.17).

Proof. If 0 < p < 1 and f is given by (2.17) with {c¢,,} € I?, then by Holder’s
inequality,

F@e 2P < T e Pl (2)e 2P,

werz?

It follows from this and Lemma 2.33 that

Iflpa < 2 lowl.

werZz2

Thus, f € Ff and
£ 15 <inf Y lew].

werZ?

If {¢,} € [ and f is given by (2.17), then

_ay,2 %y, 2
F@e” T < {ew} e 2l
werZz2

By Lemma 1.12, there exists a positive constant C such that

[[fllee.cc < Cinf[|[{cy }]|eo,

where the infimum is taken over all sequences {c,,} in (2.17).
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After interpolating between p = 1 and p = e, we have now shown that, for all
p € (0,] and {c,,} € I?, the function f given by (2.17) is in F}. Furthermore,

< Cinf[{cw} i,

where C = C(p, o, r) is a positive constant and the infimum is taken over all
sequences {c, } that give rise to the representation of f in (2.17). It is interesting
to note that this part of the proof works for any positive r.

To prove the other part of the theorem, we assume that 0 < r < 1 and consider
the linear operator 7, defined on the space of entire functions as follows:

-z Z ozw—5 % |w? f( )e G lul +a1lm(wu)dA(u).

wErZ2 Srtw

We proceed to show that 7, is a bounded linear operator on FZ and to estimate
|[I — T;||, the norm of I — T, on F}, in terms of r, where I is the identity operator.
Let D, =1—T,.If f is in FZ, then

e / F )" dAq(u)

had 2 / azﬁf%\u\zfailm(wﬁ) 67%‘142+ailm(Wﬁ)dA(u)
)+W

wGrZ2

It follows that

= 2 VH (z,w,u)dA(u), (2.18)

wErZ2 S’+W

where

|2~ oilm (wiz) e s |u|®+crilm (wiz)

— & 2 77— &
H(z,w,u) = [e"‘zw TIwl” _ gozi—Flu

We now estimate the norm of the operator D, on Fg’ and on F.
By (2.18),

o
ID,(z)|e” 21 <

r(Z>7

where

7 L 1y2 o 77 — a2 a2
eoi— 7 |ul*—oilm (wit) _ qozw—F|w|*| .~ F | dA(u)

9= 3

werz?
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Elementary calculations show that

Jr(Z> _ / ’ef%|z7w|2 _e,%\zfu‘2+ailm(sz)(ﬁfw)’ dA(I,t)
werz2 ! Srtw
= Y el [ ‘1_ef%wfw\%a(z—w)(u—w)’ dA(u)
werz? Srtw
— 2 e*%\sz\z 1—e z\u\ +o(z—w)u dA(I,t)
werz? Sr
Since |u| < r forall u € S, and
o &t Ig
1—¢ef > kAN 4 |
[1=ef= § k! ,Zl ko€

for all complex numbers {, we have

AP o\ T a2 e
1—e Flul*+o(z—w)a < e(x\z wlr+5r —1§r(e“|z w|+ ¢ _1)

< Creflin?

for all u € S,, where C is a positive constant that only depends on «. Here, we used
the additional assumption that 0 < r < 1. It follows that there exists another positive
constant C, independent of » and z, such that

a2
<cr Y e g le—wl

werZ?

forallze Cand 0 < r < 1. Since

FlawP _ o=l |g §17g— R

an application of Lemma 2.32 shows that there is yet another positive constant C,
independent of z and r, such that

J(z) <cCr Y / e’%|Z’“|2dA(u)
Sr+w

werz2*

= Cr/ e’%|Z’“|2dA(u)
C

. 4
= Cr/ e*ﬂ“'sz(u) = 7l'Cr'
C o
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This shows that there exists another positive constant C, independent of r, such that
1D flleo.c0 < Crl[ flon,cr-
Consequently, the norm of D, on F; satisfies
Do <Cr,  0<r<1. (2.19)

To estimate the norm of D, on F,, first note that |D, f(z)| is less than or equal to

o
; 2 -/S,er

werZ?

eOCZW*%|W|2 eazu77|u|2*allm Wit) |f( >|e*%‘u\2 dA(I,t)

By Fubini’s theorem, the integral

[ Do aagz)
C

is less than or equal to

2 3wl O aa),

werZz ,+w

where

azw—%|w)> _ N € |u|?>—ailm (wir)

H(w,u) = / e %k e
C

dA(z)
_ / ‘67%‘17“/? _ e*%\Z*”\eraﬂm (sz)(ufw)‘ dA(Z)

_/‘ \zl —e~ 2 72— (u—w) |+ oilmz(7—w) dA(Z)

- / e §IP
C

Since |u—w| < rforu € S, +wand |1 —e®| < el¢l -1 for all complex numbers ¢,
we have

l_eaz(u W)— 5 u— w|?

dA(z).

1 - o= §lunf | < o7y < p (e 1)

It is now clear that we can find a positive constant C = C(¢t) such that H(w,u) < Cr
for all w and u. It follows that

Lpor@le 5 aae) < cr [ Irwle $ aaw)
C C
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for all f € F). Thus, the norm of D, on F, satisfies
|Dr 1,0 < Cr, 0<r<l1. (2.20)

By (2.19) and (2.20), if r is sufficiently small, then ||D;||c o < 1 and ||D,|; ¢ < L.
By complex interpolation, we also have ||D, ||, ¢ < 1 forall 1 < p < eo. This shows
that if r is small enough, the operator 7; is invertible on FOIZ forall 1 < p <eo. When
T, is invertible and f € FY, we can write f = T,¢ with ¢ = T,"' f and obtain the
atomic decomposition (2.17) with

=" glupe tI"

+oilm (wit) dA(u)
T JS 4w

A simple argument with the help of Lemma 2.32 shows that the above sequence
{cw} is in [P whenever g € F). This completes the proof of the theorem in the case
I<p<oo.

We will complete the proof of the case 0 < p < 1 after we have proved the
following three lemmas. O

Lemma 2.35. Suppose 0 <r <1, 0< p <1, and m is a nonnegative integer. For
any entire function f, we define a sequence

{(S)wx:w € rZ?,0 <k <m}
by
@ iTme(z—)— & jonp (Z— W)
S = — eImz(z—W)— 5 |z—w|
( f)w,k 7 s, A

fz)e £ da(z).

Then S maps F}, boundedly into IP.

Proof. Forany w € rZ*,z € S, +w, and 1 < k < m, we have

oP _ap,,p @—W)F P
S P _ / ailmz(Z—w)—§ |z—w| o(z—w)w
(Sl =L | [ e 7 e

e ZLlz—w[2— 5 w|>+oilm (z— w)wdA( )‘P

P
S Clrpk |:eg‘|w|2 / ‘f(z)efa(Z*W)W‘ dA(Z):|
Sr+w
< Clrp(2+k) - 2 % |w|? sup{|f( ) o(z— wwlp ZES, —I—W}

< Czrl’(2+k)* e*%hvlz/ f(Z) —o(z—w)w (Z)

B Or+w

_ Czrp(2+k)72/
Qr+w

< CypP2Hh)2 /
B Ort+w

et 58" aa(o

@ 5" aaa).
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Let C4 = C3(m+1). Then

dA(z)

2,2,|wak|p<C4r”1 Z/er ~41P|”

werZ? k= werZ?

/m
C

dA(z2).

This proves the desired result. a

Lemma 2.36. Suppose 0 <r <1, 0< p <1, and m is a nonnegative integer. For
every sequence
c={cux:werZ?0<k<m},

define a function T ¢ by
3 JJE wl?.
2 Z vak[a(z_ azwff w
werZ? k=0

Then T is a bounded linear operator from [P into Ff,.

Proof. Tt is obvious that the series converges to an entire function f(z) uniformly
on compact subsets of C. Since 0 < p < 1, it follows from Holder’s inequality that

lF )P < 2 Z|ka|p a|z_w|]pk Oczwf*\w\z
werz? k=0
Thus "
p p
@ 8" < 3 3 e lale—wirt [ EER )
werz? k=0
and hence
_a2|P m k22 14
G <X ewsl?” [ [Joctte #] " aao)
c werZ? k=0
m
_C 2 Z|Cw,klp'
werZ?2 k=0
This proves the desired result. O

Lemma 2.37. Let ry be the number from Theorem 2.34 in the case p = . Suppose
0 <r<ryand0 < p < 1. Then every monomial 7 can be represented as

F=3 cwk(z),

werz?

where {c,} € IP.
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Proof. Fix p € (r,rp). By the already-proved case p = oo of Theorem 2.34, every
monomial z¥ can be represented as

F=3 cvku(2),

wepZ?
where {c,,} € [*. For w € pZ?, we can write w = p (m -+ in) for some integers m and
n. Since
— o 2
kW(Z) BN ST [w] ,

we have for w = r(m +in) that
(7)) = €57 S P WP lwP)

It follows that

k
’
<_Z) = 2 C:v’kw’(z)v
werz?
where
, 2 2N 20 2
= cye (p==r)(n"+m?)
is clearly a sequence in [7. This proves the desired decomposition for monomials.
O

We can now finish the proof of Theorem 2.34 in the case 0 < p < 1.
Fix a sufficiently small r € (0, 1), let m be the integer part of 2(1 — p)/p, and let
S and T be the operators defined in the previous two lemmas. We have

_ _ @ ~%u?
(I-TS)f(2) EWEZW SrwG(z,w,u)f(u)e dA(u),

where

Gk (2) — ceimuta )~ FluwP [i [a(z—w)(ﬁ—w)]kl ki (2).

It is elementary to check that

G — o) §lu-w’ [ i [o(z —w) (T — W)]k] .
k=m+1

For u € S, +w, we have |u —w| < r. Therefore,

(or|z —w|)k
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and so by Holder’s inequality, |(I — T'S) f(z)|? is less than or equal to
oo k1P p
or|iz—w a2
&3 e | 3 EEZE T e #e aaw
wGrZ2 k=m+1 : Srtw

It follows from this and Fubini’s theorem that

Llu=9s@e 1)

dA(z)

is less than or equal to

23 o] e fraw]

wErZ2

where

por 2 i r—wkp
c(w):/ce Tlewl [ Y w] dA(2)

k=m+1
o 1P
,/ 1’“z|2[ (WIZI)] 4A(2)
k!
k=m+1
o 1P
< plmt)p / S () dA(z)
c mi K

< r(m+1)17/ —RPrrekl g ().
o

So there is a constant C > 0 such that

Llu-9s@e )

dA(z)

is less than or equal to

(mt1)p app|”
2 |:/S +w |e ’
r

werz?

On the other hand,

2 P a|,2
[/s ke 5 Fupe 8|

<r¥ sup
ueS,+w
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and an application of Lemma 2.32 produces another constant C > 0 (independent of
r € (0,1)) such that

P
e 8o [ e 8 aae).
Sr+w Or+w
Thus,
4 p
Llu=m9s@e 1" aae)
is less than or equal to
Ccrlmthp+2p=2 2 / ’f(u)ef%‘”‘z ! dA(u).
werze ? Qrtw

So we can find another constant C > 0, independent of r € (0,1), such that

I =TS po < CAmI=C) g <r<t,
Since
m+3_2 > M_1_|_?,_z:()7
p p p

we see that there exists some ry € (0,1) such that ||/ — TS|, o < 1 whenever r €
(0,79). This shows that the operator T'S is invertible on F/, whenever r € (0, 7).

Consequently, for any r € (0,r), the operator T is onto, and so every function
f € Fl can be written as

F@= 3 3 curlz—w)le 2 FhP, 2.21)

werZ2 k=0

Furthermore, the coefficients ¢,,; in (2.21) all depend on f linearly, and

m
> Y lewil” <l @

werZ?2 k=0

where C is a positive constant independent of f.
Given any 8 > 0 and any r € (0,rp), it follows from Lemma 2.37 that there exist
coefficients ¢/, 0 <k <m, w € ¥Z2, |w| < N, such that

Zk _ Z C/u‘keazu F |ul <$

uerZ? Ju|<N
p,x

for all 0 < k < m. By a change of variables, the norm of

T 2 - 2 T 2
(Z _ W)keazwf Siwl* _ 2 C/u‘kea(sz)uf G lul*+ozw— 5 |w

uerZ? |u|<N
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in FY isless than & forall 0 < k <m and w € rZ2. Define an operator A, on FY by

Af@ = Y a3 et mOTeosmi-fhhl?

u,
werZ?,0<k<m ucrZ?,|u|<N
and observe that
o o . _ — = o
o(z—w)u— E|u|2 +ozw— E|W|2 = ailm (wi) + oz(w+u) — E|W+ ul®.

It then follows from Holder’s inequality that

If=Afllpa < X lewl”8” <COP||f]}.a

werZ?,0<k<m

for all f € F}. If we choose & such that C8” < 1, then ||[I —A,|| o < 1, and so the
operator A, is surjective on F. Since w +u € rZ? whenever w € rZ? and u € rZ?,
the proof of Theorem 2.34 is now complete.
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2.6 Translation Invariance

In this section, we consider the action of translations on Fock spaces and determine
three spaces that are unique under such actions: the space F; is maximal among
translation invariant Banach spaces of entire functions, the space F is minimal
among translation invariant Banach spaces of entire functions, and the space F? is
the only Hilbert space of entire functions invariant under translations.

For any point a € C, we define three analytic self-maps of the complex plane as
follows:

t.(z) =z+a, 1.(z) =z—a, 0 (z)=a—z

The map ¢, is naturally called the translation by a, and it is clear that 7, =¢_, =1, .
The map ¢, is the composition of the translation ¢, with the reflection z — —z. Note
that ¢, is its own inverse.

When making a change of variables, observe that

[ fetu0)aha(@) = [ fo @) dha()
C

C

_ E ef(x|a7w\2 w
= 2 [ rowe e aaw)

_ [ 2
= [ £ lks(9) P da ()

On the other hand,
/fo T4(2)dAg(z) = g/ f(w)efalera\z (w)
Jc 7 e dA

- %Cf(w) k—a(w) |2 dAg(w).

Similarly,
[ Fer@ka(@P dha(z) = [ fo@ulalka(2) P dho(c)
C C
= /«: f(2)dq (2),

while
[C Fota(2) ka(2) 2dAa(z) = A F(z+2a) dA2).

See Corollary 2.4. These are some of the subtle differences that can easily be
overlooked.

We can use 7, and ¢, to define certain unitary operators on F2. Although there is
an obvious temptation to use only one of these maps in the book, we have found that
there are situations in which one choice is more convenient than the other. Therefore,
we are going to use both in the book.
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For a fixed weight parameter o and a € C, we define two operators W, and U, as
follows:

Waof = fotiky, Uusf = f o @uka,

where k, is the normalized reproducing kernel of F at a. We will consider the
action of these operators on both L, and FY. The focus in this section is their action
on Fock spaces.

These are weighted translation operators. In some of the literature, the operators
W, are called Weyl (unitary) operators. We first show that both W, and U, are
isometries on the Fock spaces Fj.

Proposition 2.38. Let 0 < p < oo. We have

Wafllp.e = Uafllp.a = llf]lp.c

forall a € C and f € Ff. Furthermore, both W, and U, are invertible on FY with
Wa’1 =W_, and Ua’1 = U,. Consequently, W, and U, are both unitary operators on
F2 withW} =W_, and U} = U,.

Proof. It is easy to check that

e W, r(2) = e H | f(z - ),

and
e P @)| = e T fla—2)]
The identities
IWafllp.o = 1Uaf lp = 1 fll p.x

then follow from a change of variables. See Corollary 2.4.
To see that W, is invertible with Wa’1 =W_,, take any f € FZ and note that

W_Waf(z) = e % 510 (W, ) (z + a)
— o—oaz—§la goa(zta)—§ \“\zf(z +a—a)

= f(2).

A similar argument shows that U, is invertible with U, I'— y,. This completes the
proof of the proposition. a

Although the operators W, and U, behave similarly in many situations, there are
sometimes reasons to pick one over the other. For example, the operators W, almost
have a semigroup property with respect to a, while the operators U, are all self-
adjoint. In particular, we can use the Weyl operators to obtain the following unitary
representation of the Heisenberg group. Recall that another unitary representation
was given in Chap. 1 based on Weyl pseudodifferential operators.
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Theorem 2.39. The mapping (a,0) — e®W, is a unitary representation of the
Heisenberg group H on the Fock space FOZ{.

Proof. For any two points a and b in C, we easily check that

W W, = efOCiIm (ab)Waer _ e(XiIm (ﬁb)Waer' (222)
This shows that (a,8) — e'®W, is a group embedding of H into the group of unitary

operators on F2. O

In the rest of this section, we work with the Weyl unitary operators W,,. A similar
theory can be developed with the unitary operators U,, which is left to the reader as
an exercise.

Proposition 2.40. The Fock space Fy is maximal in the sense that if X is any
Banach space of entire functions with the following properties:

(@) Wafllx = Ifllx forallae Cand f € X,
(b) the point evaluation f — f(0) is a bounded linear functional on X,

then X C Fy and the inclusion is continuous.

Proof. Condition (a) implies that W,f € X for every f € X and every a € C.
Combining this with condition (b), we see that for every a € C, the point evaluation
f+— f(a) is also a bounded linear functional on X, and

e 219 f(a)| = [W_of(0)] < CIW_aflIx = C| flx,

where C is a positive constant that is independent of ¢ € C and f € X. Since a is
arbitrary, we conclude that f € Fy with || f||e,« < C||f]||x forall f € X. O

Proposition 2.41. The Fock space Folt is minimal in the sense that if X is a Banach
space of entire functions with the following properties:

(@) Wafllx = Ifllx forallae Cand f € X,
(b) X contains all constant functions,

then F} C X and the inclusion is continuous.

Proof. Since X contains all constant functions, applying W, to the constant function
1 shows that for each a € C, the function

ka(Z) _ eaﬁzfg\a\z

belongs to X. Furthermore, ||k,||x = ||W,1l||x = ||1]|x foralla € C.
Let {z,} denote a sequence in C on which we have atomic decomposition for F.
If f € F), there exists a sequence {c,} € I' such that

f= i Cnkz,. (2.23)
n=1
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Since each k,, belongs to X and Y, |¢,| < e, we conclude that f € X with
1£1x < X lenlllkz, llx = € X feal,
n=1 n=1

where C = ||1||x > 0. Taking the infimum over all sequences {c,} satisfying (2.23),
we obtain another constant C > 0 such that

Ifllx <CIfllgy:  f€Fq

This proves the desired result. a

Proposition 2.42. Suppose H is a nontrivial separable Hilbert space of entire
functions with the following properties:

(a) ||Waflla = ||fllz forallae Cand f € H.
(b) f+ f(0) is a bounded linear functional on H.

Then H = F2 and there exists a positive constant ¢ such that (f,g)u = c(f,&)a for
all fand gin H.

Proof. Since H contains at least one function that is not identically zero, it follows
from conditions (a) and (b) that for any z € C, the mapping f — f(z) is a nonzero
bounded linear functional on H. Furthermore, for any compact subset S of C, there
exists a positive constant C such that | f(z)| < C||f||u forall f € H and all z € S.

Consequently, the space H possesses a reproducing kernel K (z,w). Moreover,
if {e,} is an orthonormal basis of H, then

Kn(z,w) = i en(z) en(w), (2.24)
n=0

and the convergence is uniform when z and w are restricted to compact subsets of C.
In particular, the series representation for Ky (z,w) in (2.24) is independent of the
choice of the orthonormal basis {e, }.

It is easy to see from condition (a) and the proof of Proposition 2.38 that each W,
is a unitary operator on H. Fix any a € C and let 6, = W e,, n > 1. Then {0,} is
also an orthonormal basis of H. Therefore, by (2.24), we have

=3

= ka(2) ka(w) ;en(z —a)ey(w—a)

= ka(2) ka(W)Kpt (z — a,w —a),



2.6 Translation Invariance 79

where k, is the normalized reproducing kernel of FOZC ata. Let z=w = a. We obtain

Ku(z,2) = e Kp(0,0) = Ka(2,2)Ku (0,0),  z€C",

where Ky (z,w) is the reproducing kernel of F2.

By a well-known result in the function theory of several complex variables, any
reproducing kernel is uniquely determined by its values on the diagonal. See [142].
Therefore, we must have Ky (z,w) = cK(z,w) for all zand w, where ¢ = K (0,0) >0
as H contains functions that do not vanish at the origin. This shows that, after an
adjustment of the inner product by a positive scalar, the two spaces H and F2 have
the same reproducing kernel, from which it follows that H = F2. This completes the
proof of the proposition. O
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2.7 A Maximum Principle

The classical maximum principle asserts that if f is an entire function and |f(z)| <
M for all |z] =R, then |f(z)| < M for all |z| < R. The purpose of this section is to
prove the following version of the maximum principle for Fock spaces.

Theorem 2.43. Forany oo > 0 and p > 1, there exists a positive radius R = R(o., p)
such that || f|| p.o < ||gl| p,e for all entire functions f and g satisfying

If@I<lg@@], =R

Proof. Without loss of generality, we may assume that g € FY. Otherwise, the
desired result is obvious. Under this assumption, we also have

[P [ lgPdre<e,
lzI>R l<|l=R

which easily implies that f € FZ as well.
For any positive radius r and any function F in the complex plane, we write

2n .
I(rn,F)= [ F(re!%)do.
0

We fix some R > 0 and assume that |f(z)| < |g(z)| forall R < |z] < .

We will try to compare I(r,|f|? — |g|?) for 0 < r < R to I(p,|g|? — |f|") for
R < p < oo, To this end, we let ®(z) = f(z)/g(z), which is analytic and has modulus
less than or equal to 1 in the region R < |z] < eo. We may assume that |®(z)| <
1 for all R < |z] < eo. In fact, if |@(z0)| = 1 for some R < |z0| < oo, then by the
classical maximum modulus principle, the analytic function @ on R < |z| < e must
be constant, which would then imply that f and g differ by a constant multiple in
the whole complex plane, from which the desired result clearly follows.

For any p € (R, ), pick a point {(p) such that |{(p)| = p and

|@(E(p))| = max{|®(z)]: [z| = p}.

We may assume that f is not identically 0, for otherwise the desired result is trivial.
Thus, 0 < |@({(p))| < 1 forall p € (R,e). To simplify notation, let us write @, =

o(E(p))-

Since p > 1, it follows from elementary calculus that

pyP T x—y) <xP —yP < pxPl(x—y), (2.25)
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for all x > 0 and y > 0. We deduce from the second inequality in (2.25) that for any
0 <r<R<p <eo, we have

105 |£17 = 1817) < I(r,|f]” — |@pg|?)
< I(r.plf1P1(1f] - lpgl))
<I(r.plfIP7'f — wpgl)-

The function p|f|’~!|f — wpg| is subharmonic on the complex plane, so its integral
mean on |z| = r is an increasing function of r (see [76] for example). Thus,

1(n |17 = 18”) < 1(p,p|f1”~"|f — @pg))
= 1(p, plo|” '@ —wp|(g]” —|17)/ (1~ |o|")).
Taking x = 1 and y = |w| in the first inequality of (2.25), we get

ploP~! 1 1+|o| 2

I-folP = 1-]o| 1-]of " 1-|o*

Therefore,

I1(r|f1P —1gl") < 21(p, |0 — @p (lg]” — | f1") /(1 — |@[*)) (2.26)

forall 0 <r <R < p <oo.

Set
y(p)—max{% o —p}

for p € (R,0). By (2.26),

10 |£17 = 1el”) < 2v(p)I(p, |g” = 1f17) (2.27)

forall 0 <r <R < p < . Fix p and integrate both sides of (2.27) over [0, R] against
the measure re~ %" dr. The result is

1— e,aRZ

[P =18k < =Sy lp s -1 228

for all R < p < ee. Divide both sides of (2.28) by y(p) and integrate both sides over
(R, o) against the measure pe""p2 dp. The result is

[ (171617 dh < Ce [ (gl = |f17)dAa
|z <R .

|zZ|>R
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where

1— efthz

o Na—0p? ’
o / pe dp
® - v(P)
If R is a positive radius such that Cg < 1, then the integral

7= [~ lgl") dhe

Cr =

satisfies the following estimates:

/= ( [ ZR) (117 — [&l?) dAq

<Cof (P =)@t [ (171718l aAa

< [ (gl =11+ [ (177~ [81") 0
>R >R

|2[> |z]>

:0’

which proves the desired result.
We will actually show that Cg < 1 for all sufficiently small positive radius R. To
this end, let d denote the pseudohyperbolic metric in the unit disk D, namely,

Since

la—b| _ d(ab) /1-|b]?

L—lal> " \/T=d?(a,b) \/1—|a?
for all @ and b in the unit disk, we see that for all z with |z| = p,
0@ —wp|  d(o(), a’p) \/1—|wp|2
—0@P ~ V=)o) VI-]ok)

@p)
d(w() (C( )
~ V1-d(0@),0((p)

It follows that

“ d(o(z),0({(p)))
¥(p) < T, 0C()

R<p < oo, (2.29)
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The function H(z) = @(R/z) is analytic from the punctured disk 0 < |z| < 1 into
the unit disk. Since H is bounded near z = 0, it has a removable singularity at z = 0.
Thus, we can think of H as analytic self-maps of the unit disk. By the classical
Schwarz lemma, we have

d(H(z),H(w)) <d(z,w), z,w e D.
It follows that
d(o(z),0(5(p))) = d(H(R/2),H(R/C(p))) <d(R/z,R/C(p))
for all |z| = p. Combining this with (2.29), we obtain

w _ dR/zR/C(p)
1p) < o T-@RILR/C(p))

By symmetry of the unit disk,

B _ 2Rp
IZu:%d(R/aR/C(p)) =d(—R/C(p),R/E(p)) = PTIRY

From this, we deduce that

2R
V(p)épzf’;z, R<p <eo.

Plugging this into the formula for Cg, we obtain the estimate

2R(1—e R

C = .
K 2 p2 7ocp2d
o A (p”—R%)e p

IN

The quotient above tends to 0 as R — 0. Therefore, Cg < 1 for all sufficiently small
positive radius R. This completes the proof of the theorem. a

If 0 < p < 1, the inequalities in (2.25) are replaced by
pal x—y) <aP =3P < pyPHx—y), (2.30)
and a similar sequence of estimates leads to

1(r,|f1P = 1gI7) < 1(p, pla|"~ | — @p|([g]” — 1£17)/ (1 = |@|"))



2.7 A Maximum Principle 85

forall 0 <r <R < p < eo. So in this case, we need to consider the function

plo, P o) —o
y(p)_max{ | p|1—||a)((z))|1’ p|:|z|_p}, R<p <eo.

Note that the function y depends on f and g. We just need to bound 7y from above by
a function that is independent of f and g. By the left inequality in (2.30), we have

o, P Yo(z) — o 0(z)— o
< | P| | (Z) P| §2|wp|p71 sup | (Z) P2|'
= 1|0 z=p 1 —|0(2)]

Therefore, we just need to bound |w,| from below by a positive function that is
independent of f and g. But this is impossible, for we may have a situation like
f(z) = g(z)/N, where N is large; in this case, we have H = 1/N, and we can choose
N to be arbitrarily large.
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2.8 Notes

There are two ways to define the Fock spaces. One way is to consider subspaces
LP(C,dAy) consisting of entire functions. This would be similar to the definitions of
the more classical Hardy and Bergman spaces. It turns out that this is not a good way
to define the Fock spaces. The seemingly cumbersome definition of FZ as the space
of entire functions f such that f(z)e""‘z‘z/2 belongs to LP(C,dA) will make the
statements and proofs of many results much easier and more convenient later on.

The constant ¢ in F} is not essential in our theory. No generality is lost if
we choose to develop the theory with a particular choice of ¢, say ¢« = 1. This
weight parameter plays the role of Planck’s constant in mathematical physics, and
it provides us with an extra level of freedom that is useful in several situations.

Although the Fock space FOZC is a central subject in quantum physics, this book is
focused on purely mathematical analysis on Fock spaces. No serious effort is made
to show any connections or applications to physics. We refer the interested reader to
books such as [177] for applications of the Fock space in physics.

The characterization of the boundedness of P, and Q, on L spaces was obtained
in [74], where more precise norm estimates can also be found. See [96] for an
even more elaborate study of similar integral operators. The boundedness of the
projection P, on L}, for 1 < p < e can be found in [138]. The papers [214] and
[217] also study the boundedness of Py, and Q,, on L? spaces.

The study of the Heisenberg group is a small industry by itself. This is especially
so in quantum physics and harmonic analysis, where the connection of Fock spaces
to the Heisenberg group is evident. But we will not use the Heisenberg group in any
way other than the special elements W, in it.

The paper [138] by Janson, Peetre, and Rochberg is a key reference throughout
this book. In particular, the duality, atomic decomposition, and complex inter-
polation for the Fock spaces Ff, where 1 < p < e, were proved in [138]. Our
presentation of the case 0 < p < 1 follows [231] very closely.

The translation invariance of the Fock spaces was first considered in [138], where
it was shown that F} is minimal and F;” is maximal among Banach spaces of entire
functions whose norm is invariant under the action of the Heisenberg group. The
uniqueness of FOZC among Hilbert spaces of entire functions whose norm is invariant
under the action of W, was proved in [255].

The version of the maximum modulus principle in Sect.2.7 was first proved in
[194], based on a technique introduced in [122] to tackle the corresponding problem
for Bergman spaces on the unit disk. That such a maximum modulus principle might
be true for the Bergman space was first conjectured by Korenblum in [141] and was
proved in [117] in the case p = 2 and in [122] when 1 < p < 0. See [232-239] for
other work concerning Korenblum’s maximum principle.
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2.9 Exercises

®

10.

11.

12.

Show that the Fock space Fy; is a closed subspace of L?(C,dA,/2).

. Show that M, the operator of multiplication by the coordinate function z, is a

densely defined unbounded linear operator on F2. Show that the adjoint of M,
on F is essentially the operator of differentiation. More specifically, M f(z) =
(1/a)f'(z) forall f € F2.

. Let 0 < p < oo, § be a compact subset of C, and k be a positive integer. Show

that there exists a positive constant C such that

IO @)] < Cl Al

forallz€ Sand f € FJ.

Let ¢ be an entire function. Show that the composition operator Cy defined by
Cof = fo ¢ is bounded on F/ if and only if ¢(z) = az+ b, where |a| < 1 or
la| = 1 and b = 0. Characterize compact composition operators on ;. See [46]
and [110].

. Suppose 1 < p <o and f € F}. Show that the Taylor polynomials of f converge

to f in the norm topology of FY.

Suppose 0 < p < 1. Are there functions f € F such that the Taylor polynomials
of f do not converge to f in the norm topology of FZ? See [256] for the
corresponding problem in the context of Hardy and Bergman spaces.

Show that f;; is a closed subspace of F;;.

Show that the set of polynomials is dense in f;.

Characterize the space P,Co(C), where Cy(C) is the space of continuous
functions on C that vanish at eo.

If 1 < p <eoand f(z) = Ya,7" is a function in FY, then

o 1.1
a, =0 —n* |, n—oo.
n!

See [224] for this and the next few problems.
If f(z) = Ya,7" is a function in F}, then

Let 1 < p <  and let {3,} be any sequence of positive numbers decreasing
to 0. Then there exists a function f(z) = Y a,z" in F§ such that

foan 11
a,,;éO( —nt 2P5,,>, n— oo,
n!
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13.

14.

15.

16.

17.

18.

19.

20.

IfoO<p<2and

=

< oo,

14
S lanl? () w4
ANCE
n=
then the function f(z) = ¥ a,2" belongs to FJ.

If 0 < p < 2 and the function f(z) = Y a,z" belongs to F}/, then

4

d 1\2 3p_3
Sl () ¥ <o

n=0

If2<p<ooand
P

— s n\? o3
2 || o Nt 72 < oo,
n=0

then the function f(z) = Y a,2" belongs to F},.
If 2 < p < oo and the function f(z) = Y a,z" is in F}, then

P
o 1\ 2
S ol (%) <
n=0

2 Fock Spaces

Let 1 < p<2with1/p+1/g=1and f(z) = Y a,z" is in F}. Then

q
hnd n' 2 q_1
Z |an | — ) niT <o
n=0 o
If £(z) = Y an7" is in F}, where 0 < p < oo, then

< (%) 11

12153

foralln > 1.
Suppose2 < p<eo, 1/p+1/g=1,and

q
> 1\ 2
5 ot (2) it <o
n=0 o

then the function f(z) = Y a,z" is in FJ.

Suppose (X, ) is a measure space and f, € L”(X,du) for n > 0, where 0 <

p < oo. Show that

. " _ )4 —
,}gg/xlfn folPdu =0
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21.

22.

23.

24.

25.

26.

27.

28.

29.
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if and only if f,, — fo pointwise and

tim [ 1f,l7du = [ 1fol”du.
n—vee Jx X

Let R be a positive radius and let

oR?

2
= TERZ(XRZ (R2 - |Z|2)(XR 1dA(Z)

dAg(z)
denote the normalized weighted area measure on the disk B(0,R), where dA is
area measure. For any entire function f, show that

lim [ (7@ aA() = [ 1) dha(o)
R—e2 JB(0,R) C

Therefore, we can think of the Fock space as a certain limit of weighted

Bergman spaces.

Show that the norm of the operator O, on LZ is exactly 2, where 1 < p < co.

See [74].

If we define

(04 _
LiG)=— % e it (e £ dA(w),
werz? Srtw

show that || T — I||e.c — 0 as r — 0 and [|(T —I) f||1,o — 0 as r — O for any
f € FL.Do we have ||T, —I||1.4 — 0 as r — 0?

Determine the interpolation space | f&“,Fé’ lo, where 1 < p < eo.

Use the mean value theorem and Holder’s inequality to show that there exists a
positive constant C = C(a, p) such that || D, | .o < Cr3~?/P) forall 0 < p < 1.
This shows that the method employed to prove atomic decomposition for F,)
can be extended to the range 2/3 < p < 1.

Let f be an entire function and 0 < p < oo. Show that f € F} if and only if there
exists a complex Borel measure p such that

1@) = [ 51 d(a)

and {|u|(S,+w):w e rZ?} €IP.

If u is a positive Borel measure on C and 0 < p < o, show that the condition
{u(S, +w) :w e rZ*} € 17 is equivalent to the condition that the function z
W(B(z,r)) isin LP(C,dA).

Suppose f € FJ. Then there are constants a, b, and ¢ such that f(z) =
sz(z)e“ZZ+hz+c, where k is the order of zero of f at the origin and P(z) is the
Weierstrass product associated with the zeros (excluding the origin) of f.
Suppose T is a bounded linear operator on Fozc and it commutes with every
operator W,. Show that T is a constant multiple of the identity operator. This
result is called Schur’s lemma in mathematical physics. See [177] for example.
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30.

31.

32.
33.
34.

35.

36.

37.

38.
39.

40.

2 Fock Spaces

Show that the main atomic decomposition theorem remains valid if we replace

the square lattice Z? by any sequence {w;} in the complex plane with the

following properties: C = UgB(wi,r), |wp —wj| < r, and |wx —wj| > r/4

whenever k # j. Here, r is any sufficiently small positive radius.

Show that harmonic conjugation is a bounded linear operator on L}, for

I<p<eo

Characterize lacunary series in Fl. See [226].

Prove an atomic decomposition for the space f;.

Suppose f € FJ and f(a) # 0. Show that there exists a positive integer N and

at most one more point b such that
1£115.0 =N |fa)e g

RANGSR L

Prove the analogs of Propositions 2.40, 2.41, and 2.42 when the operators W,
are replaced by the operators U,,.
Suppose ®; and @, are strictly positive and Lebesgue measurable weight
functions on the complex plane. If | < p <eand 1/p+1/g =1, then

[L7(C, 0 dA)]" = L(C, andA),

with equal norms, where the duality pairing is given by the integral

(f.8lo= [ SRR 0()AG),

and

Q=

o(z) = w(z) , 0 (z)

is a geometric mean of ®;(z) and @, (z).
Suppose 1 < p < oo and 1/p+1/g = 1. For any positive parameters & and 3,
show that (L5)* = L‘l’3 under the integral pairing

gy =1 [ roeie 1 aaca),

where ¥ = (ot + 3)/2 is the arithmetic mean of ¢ and 3.
Ifo<p<a, showthatFé’CFgfora110<p§mandO<q§m.

If F is a bounded linear functional on FO’Z or fg;, show that the function
g(w) = F(e"7)

is entire.

Suppose 1 < p < oo. Show that F/ is a complemented subspace of L, that is,
there exists a closed subspace X/ of L, such that L, = F} @ X[. Study the case
when 0 < p < 1.



Chapter 3
The Berezin Transform and BMO

In this chapter, we study the Berezin transform on Fa2 and certain spaces of functions
of bounded mean oscillation (BMO) on the complex plane. We first consider the
Berezin symbol of a bounded linear operator on Fozc and show that this is a Lipschitz
function in the Euclidean metric. We then consider the Berezin transform of a
function and show that there is a semigroup property with respect to the parameter
o. We also consider the action of the Berezin transform on L” spaces and the
behavior of the Berezin transform when it is iterated.

For every exponent p € [1,c0), we define a space BMO? of functions of bounded
mean oscillation, based on Euclidean disks of a fixed radius, and study the structure
of these spaces. When 1 < p < e, we will show that the Berezin transform of every
function in BMO? is Lipschitz in the Euclidean metric.

As is well known, the Berezin transform is closely related to the notion of
Carleson measures. So we include the discussion of Fock—Carleson measures in
this chapter as well.

K. Zhu, Analysis on Fock Spaces, Graduate Texts in Mathematics 263, 93
DOI 10.1007/978-1-4419-8801-0_3,
© Springer Science+Business Media New York 2012
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3.1 The Berezin Transform of Operators

Recall that for each z € C, we use k; to denote the normalized reproducing kernel
at z, namely,

k(W) = K(w,2)/ /K@ 2) = e %1

These are unit vectors in F2.
If T is any linear operator on F2 whose domain contains all the normalized
reproducing kernels, then we can define a function 7 on C as follows:

T(z) = (Tkyk),  z€C, (.1)

where (, ) is the inner product in FOZC. We are going to call T the Berezin transform
(or sometimes the Berezin symbol) of 7. In particular, if 7 is a bounded linear
operator on Fozc, then the Berezin transform T is well defined and is actually real
analytic in C.

Proposition 3.1. Let L(F2) be the Banach space of all bounded linear operators on
F2. Then T + T is a bounded linear mapping from L(F?2) into L (C). Furthermore,
the mapping is one-to-one and order preserving.

Proof. Everything is obvious except the one-to-one part. To see this, assume that
T is a bounded linear operator on F2 and that (Tk,k;) = 0 for all z € C. Then
(TK;,K;) = 0 for all z € C, where K;(w) = K(w,z). The function F(z,w) =
(TK;,K,) is real analytic on C x C, holomorphic in w, and conjugate holomorphic
in z. Also, F' vanishes on the diagonal of C x C. It follows from a well-known
theorem in several complex variables (see [142] for example) that F is identically
zero on C x C. Consequently, TK;(w) =0 for all zand w, or TK, =0 forall z € C.
Since the set of finite linear combinations of kernel functions is dense in F2, we
conclude that T = 0. a

Note that the proof above concerning the one-to-one property of the Berezin
transform works for certain unbounded operators as well. More specifically, if T is
an unbounded linear operator on F2 such that its domain contains all finite linear
combinations of kernel functions and (T K, K,,) is real analytic, then T=0 implies
that 7 = 0.

Proposition 3.2. If T is compact on FZ, then T (z) — 0 as 7 — o,

Proof. 1t is easy to see that k;, — 0 weakly in FO% as 7 — oo. This gives the desired
result. a

It is a classical result in functional analysis that if T is positive and compact on a
Hilbert space H, then there exists an orthonormal set {e,, } in H and a nonincreasing
sequence {s, } of positive numbers such that

T(x) =Y sn(x.en)en, X€H.
n
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The numbers s, are uniquely determined by 7 and are called the singular values
of T.

Let T be a positive and compact operator with singular values {s,}, and let
0 < p < e. We say that the operator T" belongs to the Schatten class S, if the
sequence {s,} belongs to /7. For a more general operator 7, we say that it belongs
to the Schatten class S, if |T| = (T*T)'/? belongs to S,,. If {s,} is the sequence of
singular values for |T|, we write

1/p
I7ls, = [zsf;] .

Two special cases are worth mentioning: S; is called the trace class, and S is called
the Hilbert—Schmidt class. We refer the reader to [250] for more information about
the Schatten classes.

Proposition 3.3. If'S is a trace-class operator or a positive operator, then

tr(S) = %/ég(z)dA(z). (3.2)

Furthermore, a positive operator S belongs to the trace class if and only if the
integral in (3.2) converges.

Proof. First, assume that S is positive, say S = T? for some T > 0. Then for any
orthonormal basis {e, }, it follows from Fubini’s theorem that

n=

w() = 3 Senenla = X [T = 3. [ [Tes0 a0l

dAa(z)

-/, Lzlmn(znzl dhalc) = | [zmn,z@é

n=1

= [C [i (e,,,TKZ>%{

n=1

Bal0) = [ ITEIR o 0Re(2)

5K Kadha2) = [ S@K(.2)dAa2)

. %/CE(zmA(z).

Next, assume that S is self-adjoint and belongs to the trace class. Then we can
write

_IS[+S_IS[=S

S
2 2
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where each of the two quotients above is a positive operator in the trace class. The
desired trace formula then follows from the corresponding ones for positive trace-
class operators.

Finally, an arbitrary trace-class operator S can be written as

S48 . §—8*
= —|—]

S
2 2i

where each of the two quotients above is a self-adjoint operator in the trace class.
The desired trace formula for S follows from the corresponding ones for self-adjoint
trace-class operators. O

Lemma 3.4. Suppose T is a positive operator on a Hilbert space H and x is a
unit vector in H. Then (TPx,x) > (Tx,x)? for p > 1 and (T?x,x) < (Tx,x)? for all
0<p<l

Proof. See Proposition 1.31 of [250]. O

Proposition3.5. If p > 1 and T is in the Schatten class S,, then T belongs to
LP(C,dA).

Proof. If T is in the trace class, then we can write
T=T-NL+i(Tlz—T14),

where each Tj is a positive trace-class operator. By Proposition 3.3 above, the
function

T=T—-T+ils—il

isin L' (C,dA). B

If T is a bounded linear operator on F2, the function T is in L*(C,dA). It follows
from complex interpolation that if 7" is any operator in the Schatten class S, 1 <
p < oo, then the function 7 is in L”(C, dA).

Alternatively, if 1 < p < e and T is in the Schatten class S,, then by the
decomposition T = Ty — T» +i(T5 — Ty), we may assume that T is positive. But
when 7 is positive, it is in the Schatten class S, if and only if 77 is in the trace class,
so the desired result follows from Proposition 3.3 and Lemma 3.4. a

Note that we did not need the positivity of T above, while this is necessary in the
next proposition.

Proposition 3.6. Suppose 0 < p < 1 and T is a positive operator on F2. If T e
LP(C,dA), then T belongs to the Schatten class Sp.

Proof. Since T is positive, it belongs to the Schatten class S, if and only if §? is in
the trace class. The desired result then follows from Proposition 3.3 and Lemma 3.4.
O
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Theorem 3.7. Let T be any bounded linear operator on FOZC. We have

IT(2)—T(w)| < 2|7 [1 = | (e} 2]

forall zand win C.

Proof. For any z € C, let P, denote the rank-one projection from F2 onto the one-
dimensional subspace spanned by k,. More specifically,

Pz(f):<f7kz>k17 feFOZ{.

It is clear that P, is a positive operator with tr (P;) = 1.
Let {e;} be an orthonormal basis of F2 with e; = k,. Then

(TPen,en) = (TPky k) = (Tk;, k;) = T(Z)

M s

tr(TP,) =

n=1

It follows that
T(z) =T (w)| = [tr (T(P: = P))[ < ITIH|1P- = Pulls;
where S| denotes the trace class as a Banach space. Note that we have just used the

well-known inequality

e (TS)] < [IT[IS]ls,

from operator theory.

For any two different complex numbers z and w, the operator P, — P,, is a rank-two
self-adjoint operator with trace 0. So there is an orthonormal basis in which P, — P,
is diagonal with two nonzero eigenvalues A and —A, where A = ||P,— P,| > 0.
Consequently, the positive rank-two operator (P, — P,)? has a single nonzero
eigenvalue A2 of multiplicity 2, and its trace equals 2A2. It follows that the positive
operator |P, — P,,| has a single positive eigenvalue A with multiplicity 2, and its trace
is 24, which is also the value of ||P, — P,||s, .

Since

tr(P.—P,)? =tr(P,.— P,P,— P,P.,+P,) =2 —2tr(P.P,),

we can expand the unit vector k,, to an orthonormal basis of F2 and calculate the
trace of P.P,, with respect to this basis to obtain

tr (PZPW) = <PZPWkW7kW> = <szW7kW>~
But Pk, = (ky, k. )k, we have
tr(P.—Py)* =21 — |(kz, k) [*] -

It follows that A% = 1 — |(k;, k)|, which gives the desired result. O
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Corollary 3.8 Let T be any bounded linear operator on F2. Then
IT(2) =T (w)| <2Va||T|||z—wl
forall zandw in C.

Proof. Tt is easy to see that
L= [k P = 1= <l —wp?

for all z and w. The desired Lispchitz estimate is then obvious. O

Every bounded linear operator on F2 also induces a function on C x C. More
specifically, if S is a bounded linear operator on F2 and z € C, then

Sf(z) = (Sf.K)a = (f,S"K:)a
for all f € F2. We then define
Ks(w,z) = S*K;(w) = (S*K;,Ky) o = (K;,SKy) o (3.3)

for all zand w in C. It is easy to see that the function Ks(w, z) is uniquely determined
by the following two properties:

(a) Sf(z) = /C f(w)Ks(w,z) dAy(w) forall f € F2 and z € C.
(b) Ks(-,z) € F2forallz€ C.

We collect in the following proposition some of the elementary properties of the
kernel function Ks(w,z) induced by S.

Proposition 3.9. The mapping S — Kg has the following properties:

(1) Ksi1r =Ks+ Kr, Kes = cKs.

(2) Ks(-,2) € Fg.

(3) KS* (sz) = KS(Zaw)'

(4) KI (Wa Z) = K(Wa Z)'

(5) Ks, — Kg pointwise whenever S, — S weakly.

(6) |Ks(w,2)| < [IS[\/K(w,w)K(z,2).

(7) Ks, — Kg uniformly on compacta whenever S, — S in norm.
(8) Ks(z,2) = K(z,2)8*(2).

(9) Ks(w,w) =0 ifandonlyif S =0.

Proof. Properties (1)—(5) and (8) are direct consequences of the definition of Ky
in (3.3) and the definition of the Berezin transform. Property (6) follows from (3.3)
and the Cauchy-Schwarz inequality, and it implies property (7). Since the Berezin
transform S — S is one-to-one, we see that (9) follows from (8). a
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Proposition 3.10. Let S and T be bounded operators on F2. Then
Ker (w,2) = /C Ks(u,2)Kr (w,10) dhg (1)
forall wand z in C.
Proof. It follows from (3.3) that
Kst(w,2) = (T*S*K;,Ky)o = (S'K;, TKy) o

~ 5K TR R

— [ Ke K)ol KK o)
- /C Ks(1t,2)Kr (w, 1) dAg (1)

for all zand w in C. a

Proposition 3.11. If S is a positive or trace-class operator, then

r(s) = [E Ks(52) dha(2).

Proof. This follows from Proposition 3.3 and property (8) in Proposition 3.9. a

Corollary 3.12. Let S and T be bounded linear operators on F2 such that ST is
trace class. Then

tr(ST):'[Cd),a(w)'[CKs(Z,W)KT(W,Z)d),a(Z).

Proof. This is a direct consequence of Propositions 3.10 and 3.11. a
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3.2 The Berezin Transform of Functions

We say that a Lebesgue measurable function ¢ satisfies condition (I,), where 0 <
p <o if pot, € LP(C,dAy) for every a € C. In particular, any function satisfying
condition (I,) must be in L7 (C,dA).

By a change of variables, we see that a Lebesgue measurable function ¢ on C
satisfies condition (/,) if and only if

LIKGaPlo@)” dha) < (34

for all a € C. By the exponential form of the kernel function K(w,z), the above
condition is equivalent to

[KGallo@I dhatz) <=, acC. @3

We are mostly interested in two particular cases: p =1 and p =2. The case p = 1 is
needed in this section, while the case p = 2 will be used in Chap. 6 when we study
Toeplitz operators with unbounded symbols. It is clear that every function in L= (C)
satisfies condition (/).

Suppose f satisfies condition (I;). We can then define a function f on C as
follows:

7@ = (k) = [ ()P 0) dAa () (3.6)
We will also call fthe Berezin transform of f. It is clear that we can write

=2 [ rme P aa) = [ fetwdtaw. G

Sometimes, we will need to emphasize the dependence on ¢. In such situations,
we will use the notation

B f(2) /f e kP da(w),  zeC. (3.8)

Thus, f: B, f if no parameter is specified.

Theorem 3.13. Let H, = By, for any positive parameter t. Then we have the
following semigroup property: HiH; = Hs, for all positive parameters s and t.

Proof. We check the semigroup property on L™ (C). For f € L*(C), we have

\Z w\z
- / Fw dA(w) (3.9)
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for z € C and

HHf(2) = = [ e M P aa () /(Cf(u)e*%lwfu\sz(u)

nst(c

for z € C. By Fubini’s theorem,

HH,£(z) = /C FO)I(zu)dA(w),  z€C,

where
1 1 2 12
Hew) = gz Joo T dAG)
Since
1 1 1 1 1 1
~ Sl =t = = (T ) P = el P
N t N t s t
z U\ _ ., u
+(—+—)w+<—+—>w,
s s
we have
I(z,u) = He el Fuf? / ' (+H)MP g ()
s|z‘ |2 1 Lztsu s
= e ( . + /‘ 5 % KL ef(éJr%)‘w‘sz(w),
ns—|—t
Applying the reproducing formula in FE+ 1> We obtain
Iz u) = —— e~ PP+ (3 ) 55
’ (s+1)

Elementary calculations then show that

1 1 2
() = - chileu?
(z,u) ot
Therefore,
1 S Y P
HH (@) = s [0 da) = Hooi ),
This proves the desired result. O

Because of the following result, the operator H; is sometimes called the heat
transform.
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Theorem 3.14. The function u(x,y,t) = H; f(z), where z = x+ 1y, satisfies the heat
equation

%u  J%u du

W—Fa—yzz o (3.10)

Moreover, if f is bounded and continuous on C, then u also satisfies the initial

condition

lim H f(z) = f(z), zeC. (3.11)

t—0t

Proof. With z=x+1y and w = u +iv, we have

Differentiating under the integral sign, we obtain

% - ‘# Fluv)e 160 duay
R
[ 0P o v e O gy
R
Similarly,
22 e O
X R
and
azu 2 7l X u)2+( 7\))2]
= [ e oo gy
R
4

F/ (x—u)?f(u,v)e” o0+ 0% gy, gy,

Combining this with a similar calculation for d%u/dy* gives

4 —x=u)?+(y—v)?
Au = e sz(“»")e 1 (=)™ 0=)T gy dy
—7;3 /‘2[(X—u)2+(y—V)2]f(u v)e 11000 gy dy
R
du

:45’
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where
*u  du
Au=—+—-—
"o * dy?
is the Laplacian of u. Thus, u satisfies the heat equation (3.10).
To show that u also satisfies the initial condition (3.11), assume that f is bounded
and continuous on C. Fix a point z € C and write

1 1 2
Hif(z) = f(z) = — C(f(W)—f(Z))efﬂz*W‘ dA(w)
_1 L
ot lw—z|<8 Tt J|w—z|>8
=:I1+ 5.

Given any positive €, we can choose a positive § such that
fw)=f@R) <&, weB(,96).

It follows that

| < i/ e e ga(r) < £ / e T dA(w) = e.
= 7t Jjw—z<s nt Jo

On the other hand,

1 1 2
L| <2 m—/ e T dA(w
L] <2|f] g (w)

1 1y)2
= 2| £l — -7v" 44
gy ] pe " aa0)

= 2||f[we %/ =0
ast — 0. It follows that

limsup |H; f(z) — f(z)| <e&.

t—0t

Since ¢ is arbitrary, we must have

lim H: f(z) = f(2),

t—0t

which completes the proof of the theorem. O
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Note that in the heat equation (3.10), the value u(x,y,) represents the
temperature at the point (x,y) € C at time ¢. Thus, the function f(z) represents
the initial temperature distribution in the complex plane at time + = 0. With this
interpretation, the assumption that f be bounded and continuous is reasonable.
However, the initial condition in (3.11) can be shown to hold for certain functions
that are more general than bounded and continuous ones.

The following result is a direct consequence of Theorems 3.13 and 3.14.

Corollary 3.15. For any positive o. and B, we have the identities

BuBp =B us = BpBa.

o+pB

If f is bounded and continuous, then

lim Bof(z) = f(z)

O—r+oo
for every z € C.

We need the following result from Fourier analysis to generalize Proposition 3.1
to the Berezin transform of functions.

Lemma 3.16 Suppose that n is a positive integer and f is a function on R" such
that the function

42
x> fx)ele
is integrable on R with respect to Lebesgue measure dx for any t € R". Here,
X=(x1,.00, %), 1= (t1y..stn), IxX=01X1 4+,

and

x2:x%+~'+x,%, dx =dx;---dx,.

If
/ fP@e  de=0

for every polynomial P, then f = 0 almost everywhere on R".

Proof. Since

eit)c — i (IZC')k

k=0

and

N (itx)
k!

S et
<2 T ©
k=0 k=0
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for all N > 0, we apply the dominated convergence theorem to partial sums to obtain

_ 2
/nltx xdx Zk,/ntx xdx:O

for all # € R". By the Fourier inversion theorem, we have f (x)e’)‘2 = 0, and hence
f(x) =0 for almost every x € R". O

Note that the integral condition (3.12) in the next proposition is slightly stronger
than condition (/1) which was necessary for the definition of By, f.

Proposition 3.17. The Berezin transform By, is linear and order preserving. Fur-
thermore, if B f =0 and f satisfies the condition that

/C|f(z)|eltz|efoc|z\2dA(Z) < oo (3.12)

for all real t, then f(z) = 0 for almost every z € C.

Proof. It is clear that each By, is linear and order preserving.
If Bo.f =0 and f satisfies the integral condition (3.12), then differentiating under
the integral sign gives

an+m
aznazm Otf = Cm, n/ f eio{IWIz dA(W)7

where ¢, , is a nonzero constant. It follows that

/C Fon)w™ e dA(w) = 0

for all nonnegative integers m and n. The result then follows from Lemma 3.16. O

In the next few results, we describe some of the mapping properties of the Berezin
transform. In particular, we will compare By f and Bg f in various situations.
Theorem 3.18. Let 1 < p <o Suppose o, B, and y are positive weight parameters.
Then BaLg C L} if and only if y(20.— B) > 2a.

Proof. First, assume that y(2cc — ) > 20 Then, in particular, o; > [2—3 Iffely,
we write

Baf(@) = Lo [ romer Hrfieemre (= EM aap)
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It follows that
2
a oo (o ) %W B 2
Bof )] < Weiamz/ e | (et dA(w)
C
2
o 5 (ocfg) oz
= |l e e ol
a- BT
Therefore,
g 200l
B 52l ;
|Bo.f(2)]e S T

It is elementary to check that the condition y(20c — ) > 2af3 is equivalent to

y 202
L _—— _>0.
‘T2 —B "
Thus, By maps LE into L‘;,".
If f € Lk, the integral
-
C

Baf(z)e 29 dA(z)

equals

—(e+ Dl /f |2 ool dA(w )’dA(z),

which by Fubini’s theorem is less than or equal to

2 [1romle P aaw) [ 1o Re D aa ().
T JC C

With the help of Corollary 2.5, we obtain

o— 2a+ IWIZ
r< 20 e () a,

Again, it is elementary to check that the condition (2t — ) > 20¢f3 is equivalent to

2
_ 2 >B.
2004+y 7~ 2

Thus, By, maps L}; into L%,.
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By complex interpolation, the Berezin transform B, maps Ll’; into Lg for all

1 < p <o whenever y(2a. — f3) > 203.
To prove the other direction, observe that

Bof(2) = ¢ %’ 04 f(22).

It follows from this and a change of variables that By, f € L%; if and only if Qg f €

Ll;+°" Therefore, BaLg C L} is equivalent to QaLg C L€,+a , which implies that
it5 itg

it3
PaLz C L’;Jra. Combining this with Theorem 2.31, we conclude that BQLE cLy
1+7
implies that

@ zia (1)

which is equivalent to y(20c — ) > 2 3. This completes the proof of the theorem.
O

Corollary 3.19. Let oo >0 and 8 > 0. For 1 < p < oo, we have

(a) By : Ly —>Lg if and only if B > 20
(b) Bq ILg — LY ifand only if 200 > 3.

Proposition 3.20. Let o > 0and 1 < p < oo. Then

(a) By : L7 (C) — L=(C) is a contraction.
(b) By : Co(C) — Co(C) is a contraction.
(¢) By :LP(C,dA) — LP(C,dA) is a contraction.

Proof. Part (a) is obvious. If f € C,(C), namely, if f is a continuous function on C
with compact support, then it is easy to see that By f € Co(C). Thus, part (b) follows
from (a) and the fact that C.(C) is dense in Cy(C) in the supremum norm.

To prove (c), we first consider the case p = 1. In this case, it follows from Fubini’s
theorem that

IN

[ Bar@laa@) < £ [ Irojaac) [e = aac)

L 1rom1aacn).

The case 1 < p < o then follows from complex interpolation. O
Proposition 3.21. Ler0 < 3 < v and 1 < p < eo. Then
(a) Bof € L*(C) implies Bgf € L*(C) with

1Bgfllee < 1Becf |-

Sforall f.
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(b) Bof € Co(C) implies that Bg f € Co(C).
(c) Baf € LP(C,dA) implies that Bg f € LP(C,dA) with

LB @17 aac) < [ 1Bas @17 aa()

forall f.

Proof. Choose a positive ¥ such that 1 /y+ 1/a = 1/f. By Corollary 3.15, we have
Bpg = ByB. The desired result then follows from Proposition 3.20. a

Proposition 3.22. If0<f <o, 0 < p <o, and f > 0. Then
o
Bof(2) < gBpf(2),  z€C

Consequently:

(a) Bgf € L™(C) implies that Bo f € L™(C).
(b) Bgf € Co(C) implies that By f € Co(C).
(c) Bpf € LP(C,dA) implies that By f € LP(C,dA).

Proof. Since f > 0and 0 < § < o, we have

Baf(2) = 2 [ fwpe = da(w)

IN

2 o PP aa)

= 5L [rmefe R aa)
o

B Bﬁf(z).

This proves the desired results. O

Theorem 3.23. Suppose o and 3 are positive weight parameters and f > 0 on C.
For 0 < p <o, we have

(a) Bof € LP(C,dA) if and only if Bg f € LP(C,dA).

(b) Baf € Co(C) if and only if Bg f € Co(C).

Proof. Part (a) in the case 1 < p < oo and part (b) follow from Propositions 3.21
and 3.22. Part (a) in the case 0 < p < 1 will be proved in Chap. 6. a
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Recall that for any a € C, we have
ta(z) =z+a, T(z)=z—a, @2)=a-z

The following result shows that the Berezin transform commutes with each of these
maps.

Proposition 3.24. If f is a function such that the Berezin transform By f is well
defined, then for any a € C, we have

(i) Bo(fots) = (Baf)ota
(ii) Ba(fo1a) = (Baf)o Tu.
(iii) Bo(f o @a) = (Baf)© Qu

Proof. By (3.7), we have

For(@) = [ fotu(z+w)dha(w)

_ '/(cf(a—f—z—i—w)d?ta(w)
= fla+z2) = fota(2)

for any z € C. This proves (i). Replacing a by —a in (i) leads to (ii).
Similarly, it follows from (3.7) that

Foalz) = /c £ @alztw)dAo (w)
= [ fla=z=w)dra(w)
C
= fla—2) = fopu(2).

This proves (iii). O

For any positive integer n, we use By, f to denote the n-th iterate of the Berezin
transform of f, that is, we take the Berezin transform of f repeatedly n times to
obtain Bl f.

Theorem 3.25. Suppose f € L”(C) and n is a positive integer. Then

8270 - o) < U= e (313

[
n

forall zand w in C, where C =2./0/T.

Proof. Recall that the Berezin transform of f is
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Bar(1= & [ e aa),
It follows that the difference
D= Baf(z) - Baf(w)

can be written as

_/ ( Z+W> [efoc\uf(sz)/2|2_efa|u+(sz)/2\2} dA(u).

Let (z—w)/2 = rel® with r > 0. By the rotation invariance of the area measure,

Dl

IN

aHf”""/ 'ef(x\ufr|2_e7(x\u+r|2 dA(u)
T C

_ aHf”‘X’/ —ot(|u?+r* )| (u+ﬁ)r_ef(x(u+ﬁ)r|dA(u).
C

Write u = x + iy and dA(u) = dxdy. We obtain

|D| < OCH;]:”“’/ 706)7 d / x2+r2 72r(xx_62r(xx|dx

_ 2\/a||f”°° /Do efy2 dy /Do efa(x2+r2) (GZrax_eerax) dx
—oo JO

T

AL [ o)

22 (e [T

_ 2o .
= 22l [ e

_AvE L 2e

NG 1flle = \/—IIfH ez —wl.

111



112 3 The Berezin Transform and BMO

Thus, we have proved that

B (2)~ B 00)] < 2% e G.19
\/—
forall f € L*(C) and all z and w in C.
By Corollary 3.15, we have
n w 2
Bif(2) = Baf(2) = = [ fowe # daw).

This, along with a simple change of variables, shows that

B}, f(z) = Bag(z/V/n),

where g(z) = f(y/nz). Combining this with the estimate in (3.14), we obtain the
desired Lipschitz estimate in (3.13). O
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3.3 Fixed Points of the Berezin Transform

In the theory of Bergman spaces, it follows from a theorem of Ahern, Flores, and
Rudin that a function is fixed by the Berezin transform in that context if and only
if the function is harmonic, as long as the Berezin transform of the function is well
defined. No other assumption on the function is necessary. See [1].

Therefore, it is natural to ask if the fixed points of the Berezin transform in our
context here are exactly the harmonic functions as well. It turns out that the answer
is negative in general, but positive under certain conditions.

Proposition 3.26. Suppose f is a harmonic function on C satisfying condition (I, ).
Then f = f.

Proof. 1f f is harmonic, then f o, is harmonic for every z. It follows from the mean
value theorem for harmonic functions that

fotz(O):/Cfotz(w)dla(w).

This shows that f(z) = f(z) forevery z € C. 0
The following result gives a partial converse to the proposition above.

Proposition 3.27. If f € L*(C), then the following conditions are equivalent:
(@) f=F.

(b) f is harmonic.
(c) fis constant.

Proof. Since f is bounded, the equivalence of (b) and (c) follows from the well-
known maximum modulus principle for harmonic functions. If f is constant, then
clearly f = f. If f = f, then £ = f for all positive integers n. By Theorem 3.25,
there exists a positive constant C such that

@)= Fw)] < %|z—w|

for all z and w in C with z # w. Let n — . We see that f must be constant. a

Finally, in this section, we show by an example that there are more functions than
the harmonic ones that are fixed by the Berezin transform.

Lemma 3.28. For any complex {, let

I(C)Z%[;e‘:’*’zdt.

We have 1(§) = es?/4,
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Proof. Tt is clear that I({) is an entire function of {. Differentiating under the
integral sign, we obtain

I'(¢) = %[;te@’*’zdt

- %/: (r - %) i g 4 %1(5)

_ ¢
= 210).

It follows that /() = Ce*/* for some constant C and all { € C. It is well known
that 7(0) = 1. Thus, I({) =eS* /4 forall £ €C. O

Now fix two complex constants a and b such that a> + b*> = 8ouri and consider
the function

flz)=e®  z=x+iyeC,
which clearly satisfies condition (/). A direct calculation shows that
Af = (a® +b*)f = 8anif,
so f is not harmonic. On the other hand,
7@ = [ fow+2)daa(v)
= 1) [ dhalw),

where w = u +iv. Separating the variables, we obtain

f(@) = F@)I(a,)I(b, ),

1(§,a) = \/g/ieg’“’z dr.

A simple change of variables gives

where

f(2) = f@)I(a/Va)(b/Ver),
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where I({) is the function considered in Lemma 3.28 above. An application of
Lemma 3.28 then gives

F(2) = el /60 — (2,

This shows that the function f is fixed by the Berezin transform, but it is not
harmonic.
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3.4 Fock—Carleson Measures

The main result of this section is the following:

Theorem 3.29. Suppose U is a positive Borel measure on C, 0 < p < oo, and 0 <
r < oo. Then the following conditions are equivalent:

(a) There exists a positive constant C such that

[ ire P autn < [ e £+ paam
C C

for all entire functions f.
(b) There exists a positive constant C such that

/ e vl du(w) <C
C

forallz € C.
(c) There exists a constant C > 0 such that L(B(z,r)) < C forall z € C.

Proof. Fix a positive radius r and consider the lattice rZ? in C. Let {z,} denote any
fixed arrangement of this lattice into a sequence. For any entire function f, we set

1) = [ ron)eEF dp().

Then
HED /B o Fon)e$E P duon),

By Lemma 2.32 and the triangle inequality, there exists a constant C; > 0 such that

e P se [ e HE P aaw)

B(zp,2r)

for all w € B(z,,r). If condition (c) holds, then we can find a positive constant C,
(independent of f) such that

(N=CY [ Ifwe P

Zn,2r
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for all entire functions f. It is clear that there exists a positive integer N such
that every point in the complex plane belongs to at most N of the disks B(z,,2r).
Therefore,

I(f) < CoN /c Fw)e $1 P dA (u).

This shows that condition (c) implies condition (a).

To show that condition (a) implies condition (b), simply take f = k, and apply
Lemma 2.33.

Finally, if condition (b) holds, then

/ e Bl qu(w) < C
B(z,r)

for all z € C. This clearly implies that

forall z € C. O

It is interesting to notice that condition (c) is independent of p and . It follows
that if condition (a) holds for some p > 0 and some ¢, then it holds for every p and
every o (with the constant C dependent on p and ).

Similarly, condition (a) is independent of r. Therefore, if condition (c) holds for
some r > 0, then it holds for every r > 0 (with the constant C dependent on r).

From now on, we will call any positive Borel measure  that satisfies any of
the equivalent conditions (a)—(c) above a Fock—Carleson measure. Similarly, we say
that a positive Borel measure ¢t on C is a vanishing Fock—Carleson measure if

lim [C|fn(z)e*%|z‘2|”du(z) =0,

n—oeo,

whenever {f,} is a bounded sequence in Ff that converges to 0 uniformly on
compact subsets. We proceed to show that being a vanishing Fock—Carleson
measure is also independent of p and o.

Theorem 3.30. Suppose p >0, oc >0, r > 0, and U is a positive Borel measure on
C. Then the following conditions are equivalent:

(i) W is a vanishing Fock—Carleson measure.
(ii) / e T dp(w) = 0as z— o,
C
(iii) w(B(z,r)) — 0asz— oo.
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Proof. By the proof of Theorem 3.29, there exists a positive constant C (independent
of z) such that

Bz.r) <C [ F au(w)

for all z € C. So condition (ii) implies (iii).
For any sequence z, — oo, it is easy to see that the sequence of functions

eocZn w

fa(w) =k, (w) =

—_— weC
elzl?/2’ €L

satisfy || fu|| p, = 1 and f,,(w) — O uniformly on compact sets. Therefore, condition
(i) implies (ii).

On the other hand, carefully examining the proof of Theorem 3.29, we see that
there is a positive constant C (independent of f) such that

LJrome 2" duiw) (3.15)

<Y u(B(z,
< CEu(Br) /B b

(w)e /2" qa(w),

where {z;} is a fixed arrangement into a sequence of the lattice rZ2. If condition (iii)
holds, then z +— u(B(z,r)) is a bounded function, and for any € > 0, there exists a
positive integer N such that 1 (B(zx, 7)) < € whenever k > N. Thus, for any bounded
sequence { f, } in F} that converges to 0 uniformly on compact sets, we can estimate
the sequence

29 |P
I, = /(C ‘fn(w)e*a\w‘ /2‘ d[.l(W)
according to (3.15) as follows:

N
L<C / 5
kg‘l JB(z,2r)

+Ce / fa
k:%jrl' B(zy,2r)

where C is a positive constant independent of n. Since f,(w) — 0 uniformly on
compact sets in C, we have

(w)e*“‘W‘z/Z‘p dA(w) (3.16)

(w)e 2" aagw),

N

P
lim / Fu(w)e 217 qa(w) = 0.
Hwk; B(z.2r)
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Let n — = in (3.16). We obtain

limsup/ ‘fn(w)efoc\w\Z/Z‘ﬂ d.u(w)

n—soo

<C€2/

k=N+1"B(z:2r)

*a\w\z/z"’ dA(w).

There is a positive integer m (depending on » only) such that every point in the
complex plane belongs to at most m of the disks D(zx,2r). Therefore,

oo

k%Jrl/B(Zklr) fulwe e /2 ) < m/ ‘f 7GIWI2/2‘p dA(w) <C,

where C is another positive constant independent of n (since {f;,} is a bounded se-
quence in F}). Therefore, we can find yet another positive constant C (independent
of n and €) such that

limsup
n—eo

. fn(w)e*‘”wlz/z‘p du(w) <Ce.

Since ¢ is arbitrary, we have

- —a|w|2/2”’ _
tim [ [fiw)e dp(w) = 0.
This shows that condition (iii) implies condition (i). The proof of the theorem is
complete. O

Carefully examining the proof of Theorems 3.29 and 3.30 above, we obtain
the following characterization of Fock—Carleson and vanishing Fock—Carleson
measures.

Corollary 3.31. Suppose U is a positive Borel measure on C, r > 0, and {z,} is
any arrangement into a sequence of the lattice rZ*. Then

(a) W is a Fock—Carleson measure if and only if {{t(B(zy,r))} is in [~
(b) u is a vanishing Fock—Carleson measure if and only if the sequence

{u(B(zk,r))} is in co.
Here, [~ denotes the space of all bounded sequences, and ¢ is the space of all

sequences tending to 0.
Let u be a complex, regular Borel measure p on the complex plane. Define

= 2 [ eow)Pe P duin) = £ [ e P ap ),
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whenever these integrals converge. If du(z) = f(z)dA(z) and f satisfies condition
(1)), it is clear that {l = f Thus, we are going to call I the Berezin transform of the
measure [.

Taking p = 2 in Theorems 3.29 and 3.30, we see that a positive Borel measure
u on C is a Fock—Carleson measure if and only if g € L”(C), and g is a vanishing
Fock—Carleson measure if and only if i € Cy(C).

We also note that when the radius r is fixed, the function z — p(B(z,r)) is a
constant multiple of the averaging function

R

Thus, conditions on the function z — u(B(z,r)) can be replaced with the corre-
sponding conditions on the averaging function fi,.
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3.5 Functions of Bounded Mean Oscillation

For any positive radius r and every exponent p € [1,), we define BMOY to be the
space of locally area-integrable functions f on C such that

£ llgpor = supMO,, (f)(2) < oo,
zeC

where
MO N = | ox [ Ir-Foras)’
Here,
0= [,

is the mean (average) of f over the Euclidean disk B(z, 7). Clearly, BMOY is a linear
space.
When p =2, it is easy to see that

MO3,(f)(2) ) / / FO)[2dA(u)dA(v). (3.17)
7” B(z,r) JB(z,r)
It is also easy to check that

MO3,(f)(2) = /1)~ |/ @) (3.18)

Lemma 3.32. Let 1 < p < oo, r >0, and f be a locally area-integrable function on
C. Then f € BMOY if and only if there exists some C > 0 such that for any z € C,
there is a complex constant c; with

1 3

Proof. 1If f € BMOY, then (3.19) holds with C = Hf”ﬁMo” and c; = f,( ).
On the other hand, if (3.19) holds, then by the triangle inequality for the L?
integral,

1

e N >|PdA]”

77:}"

MO, ()0 = |

<lam |f—cz|ﬂdA} 1) e

wr?
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By Holder’s inequality,

- 1o 1 ’
Fo-cl=| o [ Umem|< [ [ v-eral”

It follows that MO,, (f)(z) < 2C for all z € C, so that f € BMOY. O

For any r > 0, we consider the space BO, of continuous functions f on C such
that the function

o (f)(z) = sup{|f(2) = f(w)| : w € B(z,7)}

is bounded on C. We think of @, (f)(z) as the local oscillation of f at the point z.

Lemma 3.33. The space BO, is independent of r. Moreover, a continuous function
f on the complex plane belongs to BO, if and only if there exists a constant C > 0
such that

If (@) =fw)] < C(lz—w[+1) (3.20)

forall zandw in C.

Proof. 1f f satisfies the condition in (3.20), then clearly f € BO,.
To prove the other direction, assume that f € BO,. Thus, there exists a positive
constant M such that

[f(w) = fV) <M, (3.21)

whenever |u —v| < r.

Let z and w be two arbitrary points in the complex plane. We are going to show
that (3.20) holds for some positive constant C that is independent of z and w.

If |z—w| < r, then (3.20) holds with C = M. If |z —w| > r, we place points
205 - - - 2o On the line segment from z to w in such a way that zo =z, z, = w, |z —
Zkr1| =rfor0 <k <n—1,and |z,_1 —z,| < r. By the triangle inequality and (3.21),

n—1
[F(2) = fW) < D 1f (z) = farn)| < nM.
k=0

Since (n— 1)r < |z—w| < nr, we have
nr <|z—w|+r<max(1,1/r)(|z—w|+1).

With C = max(M, 1,1/r), we obtain the desired estimate in (3.20). O
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Since BO, is actually independent of the radius r, we will write BO for BO,. The
initials in BO stand for bounded oscillation. It is clear that

[fllBo = sup{[f(z) = f(w)[ : [e—w[ < 1}

defines a complete seminorm on BO.

We will make the connection between BMO? and the weighted Gaussian
measures dA, with the help of Fock—Carleson measures. More specifically, for any
I <p<ooandr>0,we use | BA? to denote the space of Lebesgue measurable
functions f on C such that |f|? (z) is bounded. By the characterization of Fock—
Carleson measures in Sect. 3.4, the space BA? is independent of r. Therefore, we
will write BA? for BAY. More specifically, a Lebesgue measurable function f on C
belongs to BA? if and only if

£ l5ar = sup|f17(z) < oo,
zeC

where |f|P is the Berezin transform of |f|? with respect to the Gaussian measure
dA. Although the weight parameter o appears in the definition of the norm above,
the space BA? is independent of c.

The space BA? depends on p. In fact, if 1 < p < g < e, then BAY C BA? and the
containment is strict.

We now describe the structure of BMOY in terms of the relatively simple spaces
BO and BA?. Recall that @,(w) =z —w.

Theorem 3.34. Let o >0, r > 0, and 1 < p < oo. Suppose f is a locally area-
integrable function on C. Then the following conditions are equivalent:

(a) f €BMOY.
(b) f €BO-+BAP.

(c) f satisfies condition (I,), and there exists a positive constant C such that

170900~ dhalw) <€ (3.22)

forall z € C.
(d) There exists a positive constant C such that for any z € C, there is some complex
number c; with

L1709 —edrdatw) <. (3.23)
Proof. Let f € BMOS and |z—w| < r. We have

7@ = frw)l < (@) = For (@) + | Far () = Fr(w)
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1

<3 e () = for(2)| dA(u)
1 A
to st |f(u) — for(z)| dA(u).

Since B(z,r) and B(w,r) are both contained in B(z,2r), it follows from Holder’s
inequality that the two integral summands above are both bounded by a constant
that is independent of z and w. This proves that fr belongs to BO, = BO.

On the other hand, we can show that the function g = f — f, belongs to BA?
whenever f € BMOSr. In fact, it follows from (3.17) that f € BMO; implies that
f € BMO?, and it follows from the triangle inequality for L” integrals that

[7,@)" = [ [ 0= Flr s

wr?

< |am 1700~ o ato|”

wr?

to IR Farar]”

pe}
< I/ llpmop + @r(f2)(2)-

Since f; € BO, and f € BMO?, we have g € BA?.
Thus, we have proved that f € BMO; implies

f=f+(f—f) €BO+BA”.

Since r is arbitrary, we conclude that BMO? ¢ BO + BA”, which proves that
condition (a) implies condition (b).

It is clear that every function in BO satisfies condition (/). Also, every function
in BA? satisfies condition (I,). Therefore, condition (b) implies that f satisfies
condition (/). Since p > 1, f also satisfies condition (/). In particular, condition
(b) implies that the Berezin transform of f is well defined.

By the triangle inequality and Holder’s inequality,

1f 0 9. = F@) | r(are) < |1 © Pelloqare) + 7@ < 2[f1P(2).

We see that condition (3.22) holds whenever f € BAP. On the other hand, it follows
from Holder’s inequality that

10 0= F gz~ [L1fe=w) = F@)IP dAa(w)

< [ 1w = f el dha(o)dRel).
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This together with Lemma 3.33 shows that for any f € BO,

1509 Py <€ [ [ lhe=wl+ 11 dAalow) dha().

The integral on the right-hand side above converges. Thus, condition (3.22) holds
for all f € BO as well, and we have proved that condition (b) implies condition (c).
Mimicking the proof of Lemma 3.32, we easily obtain the equivalence of
conditions (c) and (d).
Finally, if condition (3.22) holds, we can find a positive constant C such that

C [ 1w - FRPdam)

nr? JB(zr)

< '[C (W) = F@)7 ke () * dAec(w)

:/C|f0(pz(w)—f(z)|1’dka(w>-

This, along with Lemma 3.32, then shows that condition (c) implies condition (a).
O

As a consequence of Theorem 3.34, we see that the space BMO? is independent
of r and the Berezin transform of every function in BMO? is well defined. Thus, we
will write BMOP? for BMOY and define a complete seminorm on BMO? by

I fllBMor = sup [ f o @: — f(2)l|1r(arg) = SUP lf 0tz = £(2)l 12 (da2e) -
zeC zeC

One of the nice features of this seminorm is that it is invariant under the actions of
14, Tg, and @y.

The proof of Theorem 3.34 also shows that every function in BMO? satisfies
condition (). In particular, BMO? C L?(C,dAy,).

Theorem 3.35. If 1 < p < oo, then there exists a positive constant C = C(p, o) such
that

17(z) = Fw)| < ClIfl[Bmor |z —w

forall zandw in C and all f € BMOP?.

Proof. Fix any z € C and fix any directional parameter 6. Consider the curve y(t) =
z+¢'%, which is traced out by a particle that starts at z, with unit speed, and in the
0-direction. Recall that

Foro) =2 [ e aatu).
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Differentiating under the integral sign gives

G700 = =22 [ plae @0 Re [ (06 - )] a(w).

For any fixed 7, the function

h(w) = Re [ (1) (1)~ w)]

is harmonic, so it is fixed by the Berezin transform. It follows that

2 [eem0 R [y (0 (50— )] dA(w) = hi(r(e)) =0.

Therefore, df (y(z))/dr is equal to

202 ~

=25 [ () = Fro)e O Re ¢ (1) () - )| dA(w).

T JC

Let ¢ be the conjugate exponent, 1/p + 1/q = 1. Then by Holder’s inequality,

|df (y(z))/dz] is less than or equal to

1

[-/c Lf(u) — F(y(2))|Pelre)—ul? dA(u)] iz

202
T

times
1
{ /C |y(t)—u|qe°‘|7’(’)”2dA(u)] ‘. (3.24)

The integral in (3.24) is, via a simple change of variables, equal to

a4 da ),

which is clearly convergent. Therefore, there exists a positive constant C = C(o, p)
such that

d

S| < MO0 < Cl v

for all ¢, where

| fllBmor = supMO,(f)(z) = sup||f © @: — f(2)l|Lr(dry)-
zeC zeC



3.5 Functions of Bounded Mean Oscillation 129

Integrating with respect to 7, we obtain

1f(2) = Fw)] < €|l fllmmorlz —w|

for all z and w in C. O

The following result gives another way to split the space BMO? into the sum of
two simpler spaces: a space of “smooth” functions and a space of “small” functions.

Theorem 3.36. Suppose f € BMO? and 1 < p < oo. Then f € BO and f — f € BAP.

Proof. It is easy to see that there is a positive constant C such that

/(@) = @) < [f(w) = f(2)|dA(w)

nr? JB(zn

<c U0 Fk )P dAat)

gq@ﬁQWFﬂmew

< Cl|fop.— f(@)lrriarg)

where the last step follows from Holder’s inequality. This shows that f— fr is a
bounded function. Since a bounded continuous function belongs to both BO and
BAP?, we have f — f, € BONBA?.

Write

f=f=-F -5,

and recall from Theorem 3.34 that f — fr is in BA?. We conclude that f — fbelongs
to BA”. Similarly, we can write

f=h+(f=F)
and infer that fe BO. o
Corollary 3.37. If1 < p < oo, then

BMO?” = LIP+ BA?,

where LIP is the space of all Lipschitz functions on C. Moreover, a canonical
decomposition is given by f = f+ (f — f).
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The next result characterizes entire functions in BMO?.

Proposition 3.38. Suppose 1 < p < oo and f is an entire function. Then f € BMO?
if and only if f is a linear polynomial.

Proof. When f is entire, we have fr = f because of the mean value theorem. It
follows from Theorem 3.34 (and its proof) that f = f, € BO whenever f € BMO”.
Thus, there exists a positive constant C such that

|f(2) = fW)] < C(lz—w[+1)

for all z and w. Let w = 0 and use Cauchy’s estimate. We conclude that f must be a
linear polynomial.

Conversely, if f is a linear polynomial, then f is Lipschitz in the Euclidean
metric. In particular, f € BO, and so f € BMO?”. a

Let VMOY denote the space of locally area-integrable functions f such that

lim MO,,(f)(z) = 0.

%

It is clear that VMOY is a subspace of BMOY. Just like BMOY, the space VMOY is
also independent of r, and we will write VMO? for VMO?.

Similarly, we consider the space VO, consisting of continuous functions f such
that

lim & (f)(z) =0.

It can be shown that VO, is independent of r, and we will write VO for VO,.. The
initials in VO stand for “vanishing oscillation.”

We also consider the space VA? consisting of functions such that

1
lim — PdA(w) =0.
lim — o) [f(w)|PdA(w) =0

According to the characterizations of vanishing Fock—Carleson measures in
Sect.3.4, the space VA! is independent of r and consists of functions f such

that | £|7(z) — 0 as z — oo. We will write VA? for VAY. The initials in VA? stand for
“vanishing average.” The following theorem describes the structure of VMO?.

Theorem 3.39. Suppose 1 < p < oo, r >0, and f is locally area integrable. Then
the following conditions are equivalent:

(i) € VMOP = VMO?.

(ii) MO, (f)(z) = 0asz— oo
(iii) f € VO-+ VAP
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Moreover, there are two canonical decompositions for condition (iii) above:
f=r+(=r0n, r=r+-r.

We omit the proof.

Corollary 3.40. Suppose f is an entire function. Then f € VMOP if and only if f
is constant.
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3.6 Notes

The Berezin transform was introduced in [23] and then studied systematically in
[23-27] for a number of reproducing Hilbert spaces. It has become an indispensable
tool in the study of operators on function spaces, including Hankel operators,
Toeplitz operators, and composition operators. See [250] for applications of the
Berezin transform in the theory of Bergman spaces. In particular, the proofs of
Propositions 3.3-3.6 were adapted from the corresponding ones in [250].

In the setting of Fock spaces and when parametrized appropriately, the Berezin
transform is nothing but the heat transform. This connection with the heat equation
makes the Berezin transform on Fock spaces particularly useful. The semigroup
property of the heat transforms was first observed in [30].

The Lipschitz estimate for the Berezin transform of a bounded linear operator
on the Fock space is due to Coburn. See [54, 55]. Propositions 3.9-3.11 and
Corollary 3.12 are taken from [55], and these results will be needed in Chap. 6 when
we study Toeplitz operators on the Fock space.

Theorem 3.25, the Lipschitz estimate for the Berezin transform of a bounded
function, was first proved in [29]. Together with the semigroup property, this result
shows that the Berezin transform is a rapidly smoothing operation on bounded
functions, and consequently, a bounded function that is fixed by the Berezin
transform must be constant. On the other hand, there exist unbounded functions
fixed by the Berezin transform that are not harmonic. The example in Sect. 3.3 was
taken from [84]. This example shows the sharp contrast with the Bergman space
theory, where the fixed points of the Berezin transform are exactly the harmonic
functions; see [1].

The characterization of Fock—Carleson measures is analogous to the characteri-
zation of Carleson measures for Bergman spaces. The material in Sect. 3.4 is taken
from [132]. See [250] for the corresponding results in the Bergman space theory.
Note that the notion of Carleson measures was initially introduced in the Hardy
space setting, where a geometric characterization is much more difficult. See [76].

The notion of BMO and VMO using a fixed Euclidean radius was first introduced
in [32,257]. This idea was then generalized to the setting of bounded symmetric
domains in [21] and to the case of strongly pseudoconvex domains in [149], with
the Euclidean metric replaced by the Bergman metric. The resulting spaces are
independent of the particular radius used, but the dependence on the exponent p
was observed and studied in [248] in the context of Bergman spaces on the unit ball.
The extension to the Fock space setting is straightforward.

The Lipschitz estimate for the Berezin transform of a function in BMO was first
proved in [21] in the context of Bergman spaces on bounded symmetric domains.
The extension to the Fock space, Theorem 3.35, was first carried out in [13].
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3.7 Exercises

o -

(98]

10.

11.
12.

13.

14.
15.
16.
17.

18.
19.

20.

Show that the Lipschitz constant 24/c in Corollary 3.8 is best possible.

. Show that the spaces BMO? and VMO? are complete under the norm

1£1 = 1f IBmor + [ £(0)].

Characterize the multipliers of the spaces BMO? and VMO?.

Show that the function |z| belongs to BMOP? but the function |z|> does not
belong to BMO?.

Show that the function \/H belongs to VMO?”.

Show that the function ¢'VF! belongs to VMO,

Study the behavior of the Berezin transform of the function In|z|, which is
harmonic everywhere except the origin.

If f € L(C), show that the sequence {f")} converges to a constant function
as n — oo. Moreover, the convergence is uniform on any compact subset of C.
If f is locally LP-integrable and

lim f(z) =L
exists, then f € VMO?.
A function f is “eventually slowly varying” if, for any € > 0, there exist positive
numbers R and 6 such that |f(z) — f(w)| < € whenever |z| > R, |w| > R, and
|z—w| < 8. Show that every eventually slowly varying function is in VMO?.
Characterize harmonic functions in BMO?.
Suppose o, 3, and 7y are positive parameters. Show that for 1 < p < e, we have
QulLj; C Ly if and only if o?/y<20—p.
Show that the Berezin transform B, is never bounded on L2, where o and B
are positive weight parameters.
If f € BMO!, show that B (|f|) — |Be.f] is bounded for o« > 0.
Does the boundedness of By (| f]) — |Be.f| imply f € BMO!?
Consider the previous two problems for 1 < p < oo.
Show that By f,(z) = By 2 f(rz), where f,(z) = f(rz).
Show that B, is a bounded and self-adjoint operator on L?(C,dA).
Show that BAY C BA? whenever 1 < p < g < oo. Furthermore, the inclusion is
strict if p < g.
If f € BMO?, then |f| € BMOP”. Similarly, if f € VMOP?, then |f| € VMO?.






Chapter 4
Interpolating and Sampling Sequences

In this chapter, we characterize interpolating and sampling sequences for the Fock
spaces F{. The characterizations are based on a certain notion of uniform density
on the complex plane. So we will first spend some time discussing this geometric
notion of density which also has applications in other areas of analysis and physics.
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4.1 A Notion of Density

Let Z = {z,} be a sequence of distinct points in C. For any set S in C, we let
n(Z,8) = |ZNS| denote the number of points in ZNS. There are two families of sets
we are going to use in this chapter: Euclidean disks and squares. More specifically,
we will use

S=Bw,r)={z€C:lz—w| <r},

and
S=Sw,r)={z€ C:|Rez—Rew| < r/2,|Imz—Imw| < r/2}.
The area of B(w,r) is tr?, while the area of S(w,r) is r2.
The lower and upper densities of Z are then defined as

Z,B
D~ (2) = limin inf "Z:B0%1) (;” 1)
r—ee weC r
and
Z.B
D*(Z) = limsup sup nZ,B(w.r)) (;v,r))7
r—ee weC r
respectively.

The following result gives an alternative description of these densities in terms
of squares. Note that in the definition above and the proposition below, the quotients
n(Z,B(w,r))/(nr*) and n(Z,S(w,r))/r?> represent the average number of points
from Z per square unit in the disk B(w,r) and the square S(w,r), respectively.

Proposition 4.1. For any sequence Z of distinct points in C, let

~ Z
B (2) = liminf inf "&:5007)
r—ee weC r
and
~ ZS
D" (Z) = limsup sup n(,—gw,r))
r—eeo  weC r

Then we have D~ (Z) = D~ (Z) and D (Z) = D*(Z).

Proof. Fix any positive number €. It is clear that there exist a finite number of
disjoint open squares S(w;,r;), 1 < j <N, in B(0,1) such that

0<7r—(r%+'~—|—r,2v) <e.
For any w € C and r > 0, it is easy to see that z € S(w+rwj,rr;) if and only if

(z—w)/r € S(wj,rj). It follows that the squares S(w+ rw;,rr;) are disjoint and
contained in B(w, r). Thus,



140 4 Interpolating and Sampling Sequences
n(Z,B(w,r)) > n (ZU?’:]S(W +rwj, rrj))

N
= Z n(Z,S(w+rwj,rrj))

j=1
_ i n(Z,S(w+rwj,rrj)) ()
j=1 (rrj)z
It follows that
MZB(wr)  § mZS(w + ) i
mr? A (rrj)? T

Z,5(G,rrj r
R

Since ¢ is arbitrary, we must have D~ (Z) > D~ (Z).
On the other hand, there exist a finite number of squares S(w;,r;), 1 < j <N,
that cover the unit disk B(0, 1) and satisfy

0<ri+ - +ry—-m<e.

For any w € C and r > 0, we have

B(w,r) C ( JS(w+rwj,rr))

=

j=1

so that

n(Z,B(w,r)) <n (Z,UIJY:IS(W-F er,rrj))

M=

< D n(Z,S(wH+rwj,rrj))

~
Il
R

i n(Z,S(w+rwj,rrj)) ().
— (rrj)?
=
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It follows that

n(Z,Bw,r)) Y n(Z,Sw+rw)) 3
nr? Sjg‘l (rrj)? ’ ;j

< sup -
j=1¢ecC (rry) T
First, take the supremum over w € C and then let r — co. We obtain
2
~ rimte~
D" (2)<D%(2)Y L < (2).
@) <D @)Y L < =b(2)

Since ¢ is arbitrary, we must have D*(Z) < D*(Z).

In the previous two paragraphs, we tried to cover the unit disk by a finite number
of squares whose total area is arbitrarily close to the area of the unit disk. If we now
try to cover the unit square S(0, 1) by a finite number of disks whose total area is
arbitrarily close to the area of the unit square, then the same arguments show that
D~ (Z) > D (Z) and D" (Z) < D*(Z). This completes the proof of the proposition.

O

The following result shows that the upper and lower densities can also be defined
in terms of arbitrary sets of Lebesgue measure 1. Note that the Euclidean disk
B(w,r) is just a translation of a dilation of the unit disk |z] < 1.

Theorem 4.2. Let I be any subset of C of Lebesgue measure 1 whose boundary has
Lebesgue measure 0. Then we have

Z 1
D~ (Z) = liminf inf ”(W—;”)
r—eo weC r
and
Z 1
D" (Z) = limsup sup w;r)
r—reo weC r

Proof. The proof is similar to that of Proposition 4.1. We will not need the full
strength of the theorem and will omit its proof here. We refer the interested reader
to [36] for details. O

We conclude the section with an example for which we can explicitly compute
the uniform densities.

Proposition 4.3. For any lattice

A={o+mw;+nwy:meZnec’l},
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we have
1
D+A =D (A = —_—.
(A) (A) T (01 59)]

Proof. The fundamental region of the lattice A is congruent to the parallelogram
spanned by w; = a; +1iap and w, = b +1ib,, whose area is

det a1 da = |a1b2—a2b1| = |Im(a)1 62)|
by by

When r is very large, the number of points in A N B(w,r) is roughly the area of
B(w, r) divided by the area of the fundamental region of A. It follows that

o (o) |Im (o @)| 1
Dr4)=b (4)=lim wr?  |m (0 @)

O
As a special case, if r is any positive number, then the uniform densities of the
square lattice rZ? are given by

DT (rZ*) =D (rZ*) =1/r%.

In particular, if » = \/7/ e, then the uniform densities of the lattice A = \/7/ o 7>
are given by

DY (Ag) =D (Ag) = 0T
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4.2 Separated Sequences

Let Z = {z,} be a sequence of distinct points in the complex plane. We say that Z is
separated if

0(Z) =inf{|zy — zm| : n #m} > 0.

When Z is separated, the number § = §(Z) will be called the separation con-
stant of Z.

The next result is a necessary condition that the values of a function in F/ taken
on a separated sequence must satisfy.

Proposition 4.4. Let Z = {z,} be a separated sequence and 0 < p < oo. Then there
exists a positive constant C, independent of f, such that

hnd B 25 |P
Y e 2" < clfip
n=1

forall f € Fj.

Proof. Let 6 = 6(Z) be the separation constant of Z. By Lemma 2.32, there exists
a positive constant C, independent of n and f, such that

e P <c [ IfEe PraA)
B(zn,r

for all f € F} and all n > 1, where r = §/2. By the definition of the separation
constant, the Euclidean disks B(z,,r) are all disjoint. Therefore,

i |f(zn)e —oz| /2|I7 < CZ/ fOfIZ\Z/2|pdA( )
n=1 Zn
<c [ 1r@e P raa)
2nC
= —IIfH
This proves the proposition. O

Based on the proposition above, we now make the definition of interpolating
sequences for F.

Let Z = {z,} denote a sequence of distinct points in the complex plane. We say
that Z is an interpolating sequence for Fj, 0 < p < oo, if for every sequence {v,} of
values satisfying

) e 2" < oo @.1)
k=1

there exists a function f € Fj such that f(z;) = vy forall k > 1.
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Similarly, we say that a sequence Z = {z,} of distinct points in C is an
interpolating sequence for F; if for every sequence {v,} of values satisfying

sul? |v,,|e*°‘|z”‘2/2 < oo, 4.2)
n>

there exists a function f € F; such that f(z,) = v, foralln > 1.
Given any sequence Z = {z,} and any entire function f, we write

1/p
p‘|

_a 2
||f|Z||ooa = Sup |f(zn)|e 2 |2 .
n>1

||f|Z||p,a = [2 ‘f(zn)e*%\z,,\z
n=1

for0 < p < eoand

The following result shows that if Z is an interpolating sequence for FZ, then
interpolation can be performed in a stable way.

Lemma 4.5. Suppose 0 < p < e and Z = {z,} is an interpolating sequence for F,.
Then there exists a positive constant C with the following property: whenever {v,}

. ol ? ; .
is a sequence such that {v,e oanl*/ 21 € IP there exists a function f € Ff such that
f(zn) = vy for all n and

£ lp.ec <ClfIZ] e 4.3)
Proof. Let X,, denote the Banach space of sequences {v,} such that {vke’%‘zk‘z} €
IP. Let Jz denote the space of all functions f € F}, such that f(z) =0 for all z € Z.
It is clear that J7 is a closed subspace of Fy. For any sequence v = {v;} € X,,, there
exists a function f € FY such that f(z;) = vy for all k > 1. We define T(v) = f +Jz.
Then T is a well-defined linear mapping from X,, into the quotient space FY, /Jz. Itis
easy to check that 7 has a closed graph in X, x (FY/Jz). Therefore, by the closed-
graph theorem, the mapping 7 is continuous, which implies the desired estimate.

O

If Z is an interpolating sequence for F, we are going to use N,(Z) = N,(Z, ax)
to denote the smallest constant C satisfying the inequality in (4.3). We put N,(Z) =
N,(Z,0) = o when Z is not an interpolating sequence for Fy. We also use the
convention that N,(0) = 0.

We say that a sequence Z = {z, } of distinct points in C is a sampling sequence
for FO’Z , 0 < p < oo, if there exists a constant C > 0 such that

P
<C|lfl

_ - a2
Cflpa < Y | Flan)e He b (44)
n=1

forall f € F}.
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Sampling for F; requires a slightly different treatment. More specifically, we say
that an arbitrary set Z in C is a sampling set for F;; if there exists a constant C > 0
such that

o2
[ lea < CsuplF(2)fe™ i (4.5)
zE€

forall f € F;. When Z is a sequence, we use the term “sampling sequence” instead
of “sampling set.”
We use M, (Z) = M,(Z, ) to denote the smallest constant C such that

If1lp.ec < ClIf1Z]]p.c

for all f € F}. Thus, Z is a sampling set for F; if and only if M..(Z) < o, and it is a
sampling sequence for Fy, 0 < p < s, if and only if M, (Z) < oo and || f|Z|| p,ac <
forall f € F}.

We use the convention that the empty set is not a sampling set for FZ, which
should be easy to conceive and accept. In particular, we are going to write
M. (0) = .

Recall that for any complex number a, the Weyl unitary operator W, is defined by

Wof(z) = e §l p(z — a).

Each W, is a surjective isometry on F}. As a consequence of this translation
invariance, we immediately obtain

Np(Z+a)=Ny(2),  Mp(Z+a)=My(2), (4.6)

which allows us to translate our analysis around an arbitrary point to the origin 0.

Our next step is to show that every interpolating sequence for F must be
separated, and every sampling sequence for F must contain a separated sequence
that is still sampling. The following estimate will be needed for this purpose as well
as several other results.

Lemma 4.6. Suppose 0 < p < oo, f is entire, and

S() = flje 12,
For any positive radius 0, there exists a constant C = C(at, p,8) > 0 such that

)

|2

IS(C+2)| = ISOI” < Clzf? /I;@w

’ei%lu

f(u)

forall § € C and all z with |z] < d.

Proof. For convenience, we write

Fe(w) =W_gf(w) =e @5 51EP (¢ 1 w).
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It is easy to see that
_ap
S+ =e 2| f ), 1S = £ (0)]-
It follows that
o2
1 +2)1 = 1Sl = [ #1121 = 1z )]
_app
= [ (2 = 1) 11 @)+ 11 @) - | (0)
< (1-e 2EF —£:(0
<(l-e e @I+ e (z) = fe (0)]
2.2 _ay,2
= (51" — 1) [~ f0)| + Lf ) - 1 O)
= (e85 1) e 5P £ ()] + el 7y o)
where the last step follows from the mean value theorem with some w satisfying

Iw| <z
By Lemma 2.32, there exists a constant C; > 0 such that

‘e*%klzfg(Z)’p <C ./B(z,5) ’

=a ./B (0,28) ‘ei%‘u‘zfg(u)‘p dA(u)

= ¢ / 525 a0

The second inequality above follows from the triangle inequality, and the last
equality follows from a change of variables.
On the other hand, it follows from Cauchy’s integral formula that

1 Je(u)du
fg( w) = i /quw‘:g (u—w)?

e § fe ()] aa(w)

dA(u).

Consequently,

1 ol
|fé(w)| < 5‘ Su}) 5|f§(u)| SCZ‘ SuF5|fC(”)|e oful*/2.

Another application of Lemma 2.32, followed by the triangle inequality and a
change of variables, gives

o <6 [ e 8 ) aagw).
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The desired result now follows from the triangle inequality
lu+v]” <2P([ul” + [v[?)
and the elementary inequality
0<efil’ —1<Cylz? <Gudlzl, |2 <8

This completes the proof of the lemma. a

Corollary 4.7. For 0 < p < oo, there is a positive constant C = C(a., p) such that

|1S(z1)] = 1S(z2)1| < Cla1 = 22| £l p.o

for all f € F and all complex numbers z; and z.

Proof. The case |z — z2| < 1 follows from the lemma above (and its proof, which
gives a version for p = o), while the case |z; — 23| > 1 is obvious. O

Lemma 4.8. Suppose 0 < p <o and Z = {z,} is an interpolating sequence for F,.
Then Z must be separated.

Proof. Fix any two different positive integers n and m. If |z, — z,,| > 1, we do not
do anything.

If |z, — zm| < 1, we consider the sequence {a;}, where a, = 1 and a; = 0 for
k # n. Since Z is an interpolating sequence for FZ, there exists a function f € F§
such that f(zk)e’o‘lzk‘z/2 =ay forall k > 1 and

<N f1Zlp.oc = Np(Z).

With the notation S(z) = e~ /2 f(z) from Lemma 4.6 and Corollary 4.7, we have

1= ||a,,| - |am|| = ||S(Zn)| - |S(ZM>|| < CNp(Z)|Zn ~ Zml,

where C is a positive constant that only depends on o and p. This shows that the
sequence Z is separated. a

We now proceed to show that every sampling sequence for FZ must contain a
separated subsequence that is also a sampling sequence for FZ. We break the proof
into two cases: 0 < p < oo and p = oo,

Lemma 4.9. Suppose 0 < p <ooandZ={z,} is any sequence of complex numbers.
Then the following two conditions are equivalent:

(a) There exists a positive constant C such that
< ‘Zn p
3 e <l

forall f € Ff.
(b) The sequence Z is a union of finitely many separated sequences.
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Proof. Condition (a) above simply says that the measure

is a Fock—Carleson measure for Fg , where §; is the unit point mass at z. Therefore,
according to (an obvious variant of) Theorem 3.29, condition (a) is equivalent to the
existence of a positive integer N such that any square S C C of side length 1 contains
at most N points from Z, which is clearly equivalent to the condition that Z is the
union of finitely many separated sequences. O

An obvious consequence of the above result is that every sampling sequence for
FJ, where 0 < p < oo, contains a separated subsequence. The following result shows
that this is true for p = o as well and we can do more than that.

Lemma 4.10. If Z = {z,} is a sampling sequence for Fy, then Z contains a
separated subsequence Z' that is also a sampling sequence for Fy,.

Proof. Fix a sufficiently small positive number € whose exact value will be specified
later. Let 2} = zj, discard the terms in the sequence {z, } that are within & of z;, and
denote the remaining terms by {z11,z12,--- } with the original order. Let 1’2 =211,
discard the terms in the sequence {z1,} that are within & of 23, and denote by
{221,222, } the remaining terms in the original order. Continuing this process,
infinitely many times if necessary, we obtain a subsequence Z' = {z),} of Z which
clearly satisfies the condition |zf — zj| > & whenever i # j. In particular, Z' is
separated. Furthermore, for any z;, either it was discarded during the process above,
in which case it is within € of some point in the sequence Z’, or it eventually gets
picked as a term in Z'. Either way, we have d(z;,Z’) < € so that

z=J [znB(Z,¢)]. 4.7)

ez
Write Z = Z' UZ" as a disjoint union. Clearly,
1£1Z]|o,0c = max (| F1Z" |oo,c0s | F1Z" | oocc) < NF1Z' oo+ 1F1Z” [} 0,00

Given any w € Z”, it follows from (4.7) that there exists some z € Z’' such that
|w —z| < €. By the triangle inequality and Corollary 4.7,

[Sw)| < 18(@)] +]IS@)] = IS(w)]]
< NAIZ oo+ CEN fllocrs

where C is a positive constant independent of € and f. Therefore,

1712

w0t S 2| f1Z'[|oo,00 + CE oo,z
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forall f € F;. Since Z is a sampling sequence for F,;, there exists a positive constant
¢ such that ¢|| f||e,o < || f|Z||o, for all f € Fg. Thus,

(€= Ce)||fllwec < 2[IA1Z||oo.c

for all f € Fg . If the value of € was chosen such that ¢ — Ce > 0, then there is
another positive constant C' > 0 such that C'|| f]|e.o < || f|Z||c0,0c for all f € Fy,
which means that Z' is sampling for Fy, . a

We want to show that the lemma above holds for p < o as well. But the proof is
more complicated.

Lemma 4.11. Suppose 0 < p < = and Z = {z;} is a sampling sequence for F.
Then Z contains a separated subsequence that is also a sampling sequence for F}.

Proof. By Lemma 4.9, we can write Z =Z; UZ, U ---UZ, as a disjoint union of
separated sequences. We prove the result by induction on n. If n = 1, there is nothing
to prove. Thus, we assume n > 1 and proceed to show that we can find a subsequence
7' of Z such that:

(a) Z'is sampling for F,.
(b) Z'is the disjoint union of n — 1 separated sequences.

Let 0 be the separation constant for Z, (so that [z —w| > § for all z and w in Z,
with z # w) and write Z =Z; U---UZ,_;. Fix any positive constant € < §/8 and
split Z, into two parts:

r:{zezn:d(z,2)<s}, F’:{ZGZn:d(z,Z)ze}.

Let Z' = ZUT". Putting I'’ together with Z;, we have
7' =(zyur’yu---uz, i,

and each of the n — 1 sequences above is separated. We will show that Z’ is sampling
for F}) when ¢ is sufficiently small.

Since Z = Z' UT", we will be done if I is empty. If I" is not empty, we write
I' = {{}. For each k, there exists a point a; € Z such that |{; — ai| < €. For i # j,
we have

lai—aj| = [(ai— &) — (a; = &) + (5 — &)
> G =il —(ai— &) — (a; — &)

3
> 85— 5.
> 6 2£>45

In particular, the points in the sequence {qa, } are distinct.
Since Z = Z' UT is sampling for F, there is a positive constant ¢ such that

cllfllpo < 112150 = I£1Z .0+ IAIT I
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for all f € F}. Using the notation S(z) = f (z)e’“lz‘z/ 2 and the triangle inequality,
we have

AT 5. = 2 1S(Z)I”
k
= 2 IS8 = IS (@) + IS (a))”
k
= 2”§,H|S(Ck)|— 1S(an)l|” +1S(ar)|”] -

Since the a;’s are distinct points from ZcZ7 , we have

2IS@)l” <12 e, fEFS-
k

By Lemma 4.6, with §/8 in place of 8, we can find a constant C > O that is
independent of € and f such that

" dA(2).

2 /IS0l - IS(al|” < Ceﬂ%‘/m ) et

ak,5/2

Since the sequence {ay } is separated with separation constant at least 36 /4, there is
another constant C' > 0, independent of € and f, such that

YIS = 18(@l]” < C'e? || f.a
k

for all f € F. It follows that

cllflp.a < 2°C'e”||f]

bat+ P+ DIAZN}
so that

(c=27C'e?) | fllpo < 2"+ VIFIZ|I} o

for all f € FY. If the value of &€ was chosen such that ¢ —2”C’e > 0, then the
sequence Z' is sampling for F. This completes the proof of the lemma. O
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4.3 Stability Under Weak Convergence

In this section, we consider a notion of weak convergence for relatively closed
subsets in the complex plane and establish several results about sampling and
interpolation that are preserved under weak convergence.

We say that a set in the complex plane is relatively closed if its intersection with
any compact set is still compact. Given a nonempty and relatively closed subset A
of C, let

A ={z€C:d(z,A) <t}, 0<t<I.

So A; is the set of all points in C that are within distance ¢ of the set A. If A and B
are two nonempty and relatively closed subsets of the complex plane, we define

[A,B] =inf{r:A C B;,BCA;}

and call it the Hausdorff distance between A and B. It can be verified that this is
indeed a metric. The assumption that A and B are relatively closed ensures that
[A,B] =0 only when A = B.
Alternatively,
[A,B] = max(d*(A,B),d"(B,A)),

where
d*(A,B) = supd(z,B) = sup inf |z —w|
Z€A 2€A WEB
is the asymmetric “distance” from A to B.
From the definition above, we see that [A, B] < € if and only if the following two
conditions hold:

1. For any a € A, there exists b € B such that |[a — b| < €.
2. For any b € B, there exists a € A such that |[a — b| < €.

Suppose {A,} and A are all nonempty and relatively closed subsets of the
complex plane. We say that {A,} converges strongly to A if [A,,A] — 0 as n — oo.
We say that {A, } converges weakly to A if {A, NF} converges strongly to AN F for
every compact set F such that none of A, N F and ANF is empty. Since [A,B] is a
distance, the limit of strong and weak convergence is unique.

To simplify notation and statements, we say that a sequence {A,} of sequences
converges weakly to the empty set if we can write

An:{anlaan27"'7}a |an1|§|an2|§"'

foreach n > 1 and a,; — o0 as n — oo foreach k > 1.

In what follows, whenever we consider a sequence, we assume that it consists of
distinct points and has no finite accumulation point. In particular, such a sequence
is relatively closed in C and can be rearranged so that the modulus of its terms is
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nondecreasing. We use the notation W (Z) to denote the collection of weak limits of
all the translates Z + z of Z. The set W (Z) will play a crucial role in our analysis.

We first prove a certain compactness property for uniformly separated sequences
in the complex plane.

Proposition 4.12. For each n > 1, let Z, be a separated sequence. If 6§ =
inf, 6(Z,) > 0, then there exists a subsequence {Z,,} and a separated sequence Z
(possibly empty) such that {Z,, } converges weakly to Z.

Proof. We write Z, = {zn1,2m, -+ } With |z,1] < |zna] < -+ If 4 — o0 as 1 —> oo,
then for every k, we have z,; — o as n — oo. In this case, {Z,} converges weakly to
the empty set.

If z,1 /> o0 as n — oo, we can find a subsequence {Z,,j} such that Znj1 —> 21 @S
Jj — oo. Then either z, j2 oo as J — oo, which implies that for every k > 2, we have
Znjk —°°as j —» oo, OF {Z, j} has a subsequence whose second components converge
to some 75 € C. In the latter case, the process continues.

There are now two possibilities: either the process terminates after a finite
number, say N, of iterations, which produces a subsequence of {Z,} that converges
weakly to a finite sequence Z = {zj,--- ,zv}, or the process never stops, which via
a diagonalization argument produces a subsequence of {Z, } that converges weakly
to an infinite sequence Z = {z1,22,--- }. The condition inf, 6(Z,) > 0 ensures that
the limit sequence Z is separated as well. This proves the desired result. O

The following result gives an alternative description of weak convergence for
separated sequences.

Proposition 4.13. Suppose each Z, is a separated sequence with § = inf, 6(Z,) >
0. Write Zy, = {zn1,2m2, -+ } with |zy1| < |zn2| < ---. Then {Z,} converges weakly to
Z if and only if one of the following is true:

(a) Z =0 is the empty set, and for every k > 1 we have z,; — oo asn — oo

(b) Z=A{z1,"--,zn} is a finite set, Z, — z for every 1 <k < N, and z,; — o for
every k > N.

(¢) Z={z1,22, - } is an infinite (separated) sequence and z,, — 7 for every k > 1.

Proof. ltis clear from the definition that any one of the above conditions implies that
{Z,} converges weakly to Z. The other implication follows from Proposition 4.12
and its proof, if we start out with an arbitrary subsequence of {Z, }. Here, we use the
fact that z,,; — zx (Where z; is either finite or infinite) if and only if each subsequence
of {z1, 20k, - -+ } converges to z. O

We now prove that any weak limit of sampling sequences for F; remains a
sampling sequence for F;;.

Proposition 4.14. Suppose {Z,} converges weakly to Z. Then

M.(Z) <liminfM..(Z,),

n—yoo

where M..(Z) denotes the Fy, sampling constant for Z.
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Proof. If Z =0, we can write Z, = {z,;} with |z,1| < |z2| < --- and have z,,; — o0
as n — oo, which implies that z,;, — oo as n — oo for every k. Choosing f = 1 in

_a 2
[1f ]l SMw(Zn)Sipe 2l £ (2|

shows that M..(Z,) — . The desired result is then obvious.
Next, assume that Z is nonempty. Since M..(Z) is the smallest M such that

£ llee.cc < M| f|Z][eo,0t

we can write

[1f]e», 1
Mwo(Z)= sup ———"—= sup ———.
refg 112l i ffug=1 /12l

It follows that the constant M = M..(Z) is given by

M= inf |f]Z|
I llma=1

SN

Thus, for any € € (0, 1), we can find a unit vector f € F;; such that
/12|l < M~ + £

This is true even when M = oo. Also, by translation invariance (namely, we can
translate Z and Z, simultaneously if necessary), we may assume that | f(0)| > 1 —e.

By Corollary 4.7, there exists a positive number § = Ce, where C > 0 is
independent of &, such that

[ EF )] — e 2 ()| < e

whenever |w — z| < 0. Since {Z,} converges weakly to Z, there exists a positive
integer N such that

(Z,nB(0,e7%),ZNB(0,e2)] < §/2

whenever n > N, where B(0, r) is the closed disk with center 0 and radius r. Here, we
may assume that € is small enough so that none of Z, N B(0,&2) and ZNB(0,e2)
is empty.

Let a = 1 — (8&2/2) and assume that &€ and § are small enough so that a €
(0,1). If n > N and w € Z, N B(0,£72), there exists some z € ZNB(0,£72) such
that |w — z| < 8 /2. It follows from the triangle inequality that

6 o
law —z| < alz—w|+ (1 —a)|z] < 54—5 =9.
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Therefore,

e EF | (aw)| = e F1F | paw) e T < o= Flavl?| aw))
< |e~ 819 flaw) — e FEF (o)) |+ 5 (o))
< e+[If1Z]lwa <M+ 2e.

On the other hand, if |w| > &2, then

e EE | f(aw)| = e~ 1P| f(aw) e FI-OME

< | flooqe™ FA-OME
< o S-a)et _ -G

We may assume that € is small enough so that
e 1P| f(aw)| < e~ (€0)/18) < 1 1 0g

for all |w| > £~2. Combining this with the last estimate in the previous paragraph,
we conclude that the function g(z) = f(az) satisfies

g Znlcoc <M ' 4+2¢, n>N.

Since |f(0)| > 1 — &, we have

[8lle.cc = [2(0)] = [£(0)] > 1 —e.

It follows that

oo 1—e
M..(Z,) > 2 >
@) 2 Telzlon = M7 122

for all n > N. Thus,

1-¢
- -
hrrglngw(Z,,) e T
The desired result now follows by letting € — 0. O

As a consequence of the proposition above, we see that small perturbations of
a sampling sequence for F; remain sampling sequences for F;;. More specifically,
we have the following.

Corollary 4.15. Suppose Z = {z,} is a sampling sequence for Fg. There exists a
positive number 8 such that any sequence W = {w, } satisfying |z, —wy| < 6, n > 1,
is still a sampling sequence for F; .
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The discussion above was about the behavior of the sampling constant M..(Z)
under weak convergence. The following result concerns the sampling constant
M, (Z) when p < o. Recall that for any separated sequence Z, we use

0(Z)=inf{|lz—w|:z€ZweZz#w}

to denote the separation constant of Z.

Proposition 4.16. For eachn, let Z, be a separated sequence in C. Ifinf, §(Z,) > 0,
then

My (Z, o) <liminfMy,(Z,,00), 0 < p < oo,
n—soo

whenever Z, converges weakly to Z.

Proof. When Z = 0, the desired result is proved just as in the case p = oo. See the
proof of Lemma 4.14. So we assume Z # 0 in the rest of the proof.

Let 6 = inf, 6(Z,). It follows from Proposition 4.13 that Z is separated and
8(Z) > 0.

Given any € > 0, we follow the same argument at the beginning of the proof of
Proposition 4.14 to find a unit vector f in FY such that

If1Zllp.e < M~ +,

where M = M, (Z, ov) (which may be infinite).
For any fixed and large enough radius R, we can find a positive integer N such that

[Z,NB(0,R),ZNB(0,R)] < min(6/6,¢), n>N.

Thus, for any n > N and z € Z, N B(0,R), we can find some w € Z such that

)
lz—w| < 3 lz—w| <e.

Since Z is separated with separation constant at least 8, we see that different z
correspond to different w. By Lemma 4.6, there exists a positive constant C =
C(o, p,0) such that

e 2 —loje P <cer [ ek anG)

If 0 < p <1, it follows from the triangle inequality that

p

’f(z)e*%lz\z

’ < ‘f(W)ef%lwlz’P + ’|f(z)|e*%\z|2 — |f(w)|e’%‘w\2

|2

< |flwpe§eP ’ dA(w).

"4 cer / ‘ Flu)e 5l
B(w,5/2)
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Sumoverall z € Z,NB (0,R), observe that different z correspond to different w, and
use the facts that f is a unit vector in F} and §(Z) > . We obtain

I£1Za N BO,R) |15, < I f|ZI[}5.cc + CEP
Since C is independent of R, letting R — oo gives

pa < F1Zlpo+CeP < (M~ + )P +CeP

1f1Za]

for all n > N. It follows that

1

| 1

My(Zny00) 2 | ’
(M~!+¢e)P+Cep

for all n > N, and so

1
1 P
imi > .
lim infMp (Zy, &) 2 { (M~ +e)P+ Csp]
Since ¢ is arbitrary, we must have

liminfM,(Z,,0)) > M = M,(Z,c).
n—soo

If 1 < p < o, we apply the version of the triangle inequality for p > 1 to get

— _a),2
IA1ZNBORNpa= | ¥ |f@e 5F
=z NB(0,R)

1
P

p

Y [fome g

weZNB(0,R)

Ce? / Flu)e §P
wg'z B(W,S/Z)‘ ( )

<If1Zllpa +CPe <M+ (14+CP)e.

IN

1

+ g dA(u)] '

Since C is independent of R, letting R — o gives us
Hf|Zn||p,a < M! + (1 +C1/p)8

for all n > N. It follows that

-1
My(Zy) > M*1+(1+cl/ﬂ)s} , >N,
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so that
-1
liminfM,(Z,,a) > M71+(1+C1/”)g} '

n—soo

But ¢ is arbitrary and C is independent of €, so we must have

liminfM,(Z,,a) > M =M,(Z, ).

n—soo
This completes the proof of the proposition. a

Corollary 4.17. Suppose 0 < p < oo and Z is a separated sequence with separation
constant 8. If Z is sampling for F§ and Z' is another sequence such that [Z,7'] is
sufficiently small, then Z' is also a sampling sequence for FL.

Proof. This follows from Proposition 4.16. O

Carefully examining the proof of Lemmas 4.14 and 4.16, we see that more can be
done. More specifically, if Z is separated, then there exists a constant C > 0 such that

Ml’ (Z/v OC) < C[sz/]M]? (Z)

for sequences Z’ that are sufficiently close to Z. Here, the constant C only depends
on p and o.

This concludes the discussion about the stability of sampling sequences under
weak convergence. Next, we consider the stability of interpolating sequences under
weak convergence.

Proposition 4.18. Suppose {Z,} converges to Z weakly. Then
Ny(Z,a) <liminfN,(Z,, o)
n—oo

forall 0 < p < oo,

Proof. The case Z = 0 is obvious. Also, by working with a subsequence if necessary,
we may assume that

liminfN,(Z,) = im N,(Z,) < ee.
n—yoo

n—yoo
In particular, we may assume that
S =supN,(Z,, o) < ee.
n
By the proof of Lemma 4.8, we have 6 = inf, 8(Z,) > 0. Then it follows easily from
Proposition 4.13 that the sequence Z is also separated and its separation constant is

at least 9.
With the help of Proposition 4.13, we may also assume that

Z”:{anvzn27"'}7 Z:{ZI’Z27...}7

with z,x — zx, as n — oo, for every appropriate k (depending on whether Z is finite
or infinite).
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Fix a positive number € and a sequence v = {v;} € [P. If Z is a finite sequence of
length m, we assume that v, = 0 for k > m. For each n, there exists some function
fun € F[ such that

o 2
fn(znk)eiglznk‘ = Vk, k>1,
and

||fn||p706 < Np(Zn)an|Zn||pﬂ <S|vllw-

By a normal family argument, we may assume that

lim f,(z) = f(2)

n—yoo

uniformly on compact subsets of the complex plane. By Fatou’s lemma, we have
f € F} with

1l < Timin | foll e < vl iminf N (Z,).

Furthermore, for any fixed z; € Z, we have
fae HE = lim £, (z)e™ 2l = vy,
It follows that || f|Z|| p.o = ||v||;» so that
£ llp.ec < I f1Z]p.o liminf N, (Zs).

This shows that
Ny(Z) <liminfN,(Z,)

n—soo
and completes the proof of the proposition. a

Corollary 4.19. Suppose 0 < p < oo and Z is a separated sequence. If Z is an
interpolating sequence for FY, then there exists a positive constant & such that Z' is
interpolating for FY) whenever [Z' | Z] < o.

Proof. This follows from Proposition 4.18. O
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4.4 A Modified Weierstrass o-Function

A key tool in our proof of the sufficiency of the sampling and interpolating
conditions is a special, modified Weierstrass o-function. Thus, we let Ay = { @y
denote the square lattice in C that is defined by

O = /) o(m+in),

where m and n run over all integers. Recall that the Weierstrass o-function
associated to Ay, is defined by

z z 1 7
co(z)=z]]'|1- )ex ( +- ),
() ,1,11( o ) P\ O 2 @2,

where the prime denotes the omission of the factor corresponding to m = n = 0. By
Proposition 1.19, 04(z) is an entire function with A as its zero set.
Also, recall that for any a € C, the Weyl unitary operator W, is defined by

Waf(e) = £C f(~a).
Proposition 4.20. The function oy is quasiperiodic in the sense that
Wa,,, O (2) = (=1)" """ 6 (2)

for all 7 and @yy,. Consequently, if

. 1 1
Ry = {zzx—i-ly: x| < z\/ﬂ/0h|)’| < E\/n/a}

is the fundamental region for Aq, then for any z € C, there exists some w € Ry
such that

a2 a2
|6a(2)le” 21" = | (w)[e~ 7"
Furthermore, there exists a positive constant ¢ such that
a2
|00 (2)]e” 21" > cd(z,Aq)

for all z € C, where
d(z,Aq) =min{[z—w|:we A}

is the Euclidean distance from z to Ay,

Proof. See Proposition 1.20 and Corollary 1.21. a
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The reciprocal density parameter o in A, is critical for the Fock spaces F;. More
precisely, we will see that Ag is interpolating for Ff if and only if B < o; and Ap is
sampling for Fy if and only if B > . When 8 = «, Ap is neither interpolating nor
sampling for F, but is a set of uniqueness for FY; see Lemma 5.7.

We will need to perturb the zeros of the Weierstrass o-function 04 (z). Let Z =
{zmn} be a sequence of distinct points in C. If there exists a constant Q > 0 (not
necessarily small!) such that |@y, — zun| < Q for all @, € Ag, then we say that Z
is uniformly close to Ay For any sequence Z = {z, } that is uniformly close to A,
we define an associated function as follows:

g(z)—gZ(Z)—(Z_ZOO)H/<1_L) exp <i+%(j§ ) (4.8)

mn Zmn Zmn nn

Here, we assume that z( is the point of Z closest to 0. Note that both z,,, and
appear in the formula above; it was not a misprint.

Lemma 4.21. Let Z be uniformly close to A = Ay and let g be its associated
function defined above. Then g is an entire function and the zero set of g is exactly
Z. Moreover, there exist positive constants C1, Cy, and ¢ such that

8(2)e $1F > ¢reclllogll gz, 7) (4.9)
and
lg(z)]e” FF° < Cyecldioeld (4.10)
for all z € C. Moreover,
1€ () e~ F ol > €y e clamllogamd (4.11)

for all m and n.

Proof. The convergence of the infinite product defining g and the determination
of the zero set of g are similar to the corresponding problems for the Weierstrass
product in Chap. 1. We leave the routine details to the reader.

We may write

B e*%IZ\ZGa(Z)

e () = aea) D),

where the factor e ~#I*/2 0u(z)/d(z,A) is bounded below (see Proposition 4.20) and

~ g(z)d(z,A)
o) = G dez)

It is easy to see that & is continuous and nonvanishing on the complex plane. So
|i(z)| is bounded below on |z| < 2Q. Here, Q is the constant that satisfies |z, —
Omn| < Q for all (m,n). To show that /(z) is bounded below for |z| > 20, we rewrite

h(z) = hi(2)ha2(2)h3(2),
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where
1 1
hi(z) = exp |z z/(—— )]7
lamn| <2]e| NG Omn
ho(z) — c(ll(zé) Z—200 /11_Z/Zmn ,
(Z7 ) z ‘Zmn‘SZ‘ZI _Z/a)mn

and

h3(Z) _ (1 _Z/Zmn) eXp(Z/Zmn)

‘Zmn‘>2‘2| (1 - Z/wmn) exp(z/wmn) '
Since Z is uniformly close to A, we have

1 1

Zmn Winn

C
= |om|?

for some constant C > 0 and all (m,n) # (0,0). Using this and the elementary
estimates

N N
1
e >e M, ——— ~logN, 4.12
| | = ng‘lmgl n2 +m2 g ( )
we can find positive constants C and ¢ such that
|hi(z)] > Ce~ckllegll 7 <. (4.13)

Rewrite /12(z) as

"

_ [T [1 — (@ — 2in) / (O — 2)]
hz(z) - (P(Z) H// [1 _ ((Dmn —Zmn)/a)mn]

)

where

d(z,A) z—z00 1 —z/zu
d(z,Z) z 1—z/wy’

@y is the point in A that is closest to z, and the finite product H// is taken over all
(m,n) such that

(mvn) # (070)7 (mvn) # (kvl)v |Zmn| S 2|Z|

It is clear that ¢(z) is bounded below for |z| > 2Q.
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Since Q satisfies |z — @un| < Q for all m and n, the condition |z,,| < 2|z
implies that

|a)mﬂ|§2|z|+Q7 |wmn_Z|§3|Z|+Q

It follows that
" 1_ < " 1+
-] < e
< 1+—:0<w <2|z| + .
TT{1+ 20 <ol <261+ 0}

To estimate the other product 1" in ha(z) above, we move a few additional factors
into ¢(z) and further assume that |z — @;,| > Q. Therefore, we can find a positive
constant C, independent of z, such that

[T{(1 = Q/|wmn—2|) : O < |®mn — 2| <3|2| + O}
[T{(1+ Q/|@m]) : 0 < [@n| < 22| + O}

Iha(2)] = C

for all z € C. If we write z = w + @y, where |w/| is a bounded function of z, then by
the translation invariance of A, we have

[T{(1 = O/ | @ —w|) : O < |@pn —w| <3|z| + O}
[T{(1 + Q/|®mnl) : 0 < [@mn| < 2|z + O}

|ha(z)] > C

for all z € C. Take the logarithm of the above inequality, use the fact that log(1+x) ~
x when x is small, and observe that

>

as R — oo (which is easily obtained with the help of polar coordinates), we see that
there are positive constants ¢ and C such that

1

—— 0 < |@uy—w| <R| ~R
| @ — W

Iha(z)| > Ce™Fl,  zecC. (4.14)
To estimate h3(z), observe that |z,,| > 2|z| implies

(1 —2/zmn) exp(z/zmn)
(1 =2/ ®pn) exp(z/ Opn)

~ (1= z/zmn) €xp(z/zmn) — (1 — 2/ @Opn) €Xp(2/ @)

1—
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It follows that
1
log|h3(z)] > =Cilz]> Y, > > (G
(e 2] | Onn
so that
Iha(z)] > Ce™¥l,  zecC, (4.15)

for some positive constants ¢ and C.
Inserting the estimates (4.13), (4.14), and (4.15) into & = h1hyh3 and then into the

function e~/ 2¢(z), we have proved the inequality in (4.9), which in turn gives

|g(z) — g(zmn) e~ %2 > ¢ e—clllogld d(z,7)
|Z_Zmn| - |Z_Zmn|

for all z # Zyy. FiX Zy, let Z — zZyn, and observe that d(z,Z) = |z — zun| When z is

sufficiently close to z,,,. We then obtain (4.11).
To prove (4.10), we write g = 0o H, or

e 5 () = F o (0)H (2).

The quasiperiodicity of o, implies that the factor e s ‘leca (z) is bounded. Rewrite
H= H1H2H3, where Hl = hl, H3 = h3, and

Z—20 ;1 =2/ 2

H2 (Z) )
< ‘Zmn‘gz‘z} - Z/a)mn

and estimate the functions Hj the same way we did Ay, the result is (4.10). This
completes the proof of the lemma. a

Lemma 4.22. Let g be the function associated to Z = {zmy }. For any positive radius
R, there exists a positive constant C such that

forall (m,n) and all |z| <R.

Proof. It is clear that

8(2)
Z— Zmn

_ 8@ dz2) _ lg(2)

d(z,Z) |z—zm| — d(z,Z)"

The desired result then follows from the fact that the function g(z)/d(z,Z) is
continuous on the whole complex plane. O

Lemma 4.23. Suppose Z is a sequence that is uniformly close to Agy. Then,
DY (Z)=D"(Z)=o/x.
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Proof. Suppose Z = {zmn}, Aq = {Omn}, and |2y — Omp| < O for all m and n,
where Q is a positive constant. When r is much larger than Q, the number of points
in ZN B(w,r) is roughly the same as the number of points in Ay N B(w,r). More
precisely, it is easy to see that

lim n(Z7B(W7r)) —
r—e n(Ag,B(w,r))
and the convergence is uniform in w € C. This clearly gives the desired result. O

The following result is usually referred to as a Lagrange-type interpolation
formula.

Proposition 4.24. Let Z = {z,u,} be a separated sequence in C that is uniformly
close to Ag and let g be the function associated to Z by (4.8). If a < 3, then every
function f € F; can be written as

)

where the series converges uniformly on compact subsets of C.

Proof. Since |f(zym)| < Ce®am /2 it follows from (4.11) that

z 1
‘_f/(zmn)) ‘ < Cexp <_§(B - a)|zmn|2 + €|zl 10g|z’””|>
n

for all m and n. This, along with Lemma 4.22, shows that the series converges
uniformly on compact subsets of C.

To show that the series actually converges to f(z), we argue as follows. For each
sufficiently large r, it is easy to see that we can find a simple closed pass S = S,
such that

d(S,Z) > 8(2)/2, d(S,0)>r, |S|<8mr (4.16)

where 6(Z) is the separation constant of Z. Let U be the region bounded by S. For
any z € U —Z, we have by the calculus of residues that

L[ Q4 fQ) < flm) 1
e

2miJs (E—2)g(8)  glz) _“Zyéla z—zmn'

By (4.9), with o replaced by f3, (4.16), and the fact that

£l 3 <l flle, L €C,

we see that the integral on the left-hand side above tends to 0 as r — oo. This proves
the desired expansion for f. O
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4.5 Sampling Sequences

We say that a set Z in C is a set of uniqueness for FY if every function in FZ that
vanishes on Z must be identically zero. Recall that a sequence Z is a zero set for FY
if there exists a function f € FJ whose zero set is exactly Z. Thus, a zero sequence
is not a set of uniqueness. But we cannot say that Z is a set of uniqueness if and only
if Z is not a zero set for FY. It is obvious that each sampling sequence for F} is a
set of uniqueness for F/. We use the convention that the empty set is not a set of
uniqueness for F, which is again easy to conceive and accept.
Recall that W(Z) is the collection of weak limits of all the translates Z + z of Z.

Lemma 4.25. A separated sequence Z is sampling for Fy if and only if every A €
W(Z) is a set of uniqueness (and hence nonempty) for Fy.

Proof. First assume that Z is a sampling sequence. Let A € W(Z) be the weak
limit of some sequence A, = Z+ {,, §, € C. Although the set A may not be a
sequence, it follows from the proof of Proposition 4.14 and the translation invariance
of M..(Z) that

Mo(A) < liminfMw.(A;) = Mw(Z) < oo,

n—soo

where M..(A), just as in the case of sequences, is the smallest M such that

flloee < Msup Il 27z e a}

forall f € F;. So A is a sampling set for F;. In particular, A is a set of uniqueness
for Fy.

Next, assume that Z is not sampling for F;". Then there exists a sequence { f;, } of
unit vectors in £ such that || f;|Z]|e.oc — 0 as n — eo. For each n, we use continuity
to find some z,, € C such that

) e~ = 2.

Let
|2

gn(z) :fn(z_’_zn)ef(ﬁnzf%lzn

Then for each n we have

w0 = [ o]

[l &nl wa =1, lgn(0)| = 1/2.

Also,
i 60 Aol = Ji /2] =
By a normal family argument, we may assume that g,(z) — g(z) uniformly on
compact subsets of C. Clearly, g € Fy, ||g]|.oc < 1, and g(0) # 0. Let A be a weak

limit of the F; sampling sets A, = Z — z,,, possibly empty. The existence of such an
A follows from Proposition 4.12.
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If A is empty, it is certainly not a set of uniqueness for F;. If A is not empty, we
fix any point a € A. For any integer k, we can find a point {; in some A,, such that
|a — &| < 1/k. By Corollary 4.7, there exists a positive constant C such that

—_2),2 _ayg, 2
e 2 |gu (a)| —e 315 g, (G)l| < Cla— &

for all k. Let k — oo and use the inequality

_ai 2
e 719 00, ()] < llgn Ayl

We obtain g(a) = 0. So g vanishes on A but g(0) # 0. Thus, A is not a set of
uniqueness for F;". This completes the proof of the lemma. O

Lemma 4.26. If Mo.(Z, ) < oo, then Mo (Z, 00 + €) < oo for all sufficiently small
£>0.

Proof. By Lemma 4.10, Z contains a separated subsequence which is also sampling
for F;. By working with such a subsequence if necessary, we may assume that Z is
already separated.

Suppose M..(Z,0t) < o, but for a decreasing sequence of positive numbers &,
approaching 0, we have M.(Z, o + €,) = e=. We will obtain a contradiction.

For each n, we can find a unit vector f; in Fy’ . such that

£l Zllo 0+, < &n-

Using the intermediate value theorem for continuous functions, we can also find a
point &, € C such that

wsn i _ ]

|fn(Gn)le™ 21 =5
Let
gu(2) = fulz+ G S TGE
Then
Iulloacses = [ fllwre, = 1. lga(0)] = 5.
Note that

180l crter < [8nllee.ate, =1

for all n. With the help of a normal family argument and passing to a subsequence of
{gn} if necessary, we may assume that g,(z) — g(z) uniformly on compact subsets.
The limit function g is entire, and |g(0)| = 1/2. For any z € C, we have

otén |Z‘2

2,2 . _ .
e 2 g() = lime™ " [, (2)| < lim [[gn|v. 06, = 1.
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Thus g € Fy with ||g[e,a < 1.
Let Z, = Z — {, for every n. Then

||g”|Z"||°°7OC+£n = ||f"|Z|

0o, 0+ < &,.

Since Z is separated, we have inf,, 8(Z,) > 0. By Proposition 4.12, {Z,} contains a
weakly convergent subsequence. Let A be the weak limit of some sequence {Z,, }.
ThenA € W(Z).

If A is empty, it cannot be a set of uniqueness. Assume A # @ and fix some
point a € A. For any positive integer j, there exists some point w; € anj such that

|a—w;| < 1/j. By Corollary 4.7, there exists a positive constant C such that

lX+Enk )

_ J 12
gnkj (a)| —¢€ 7wl |gl1kj (W.f)|

< Cla—wjl

for all j. Letting j — oo leads to g(a) = 0. This shows that g € F, g(0) # 0, but g
vanishes on A. So A is not a set of uniqueness for F;’. This contradicts Lemma 4.25
as we are assuming that Z is a sampling sequence for F;. a

Lemma 4.27. For any fixed positive number r, the sequence {oy(r)} defined by
2

o-( 7l O{rkild
kr)_k' A e " dr

is decreasing in k and tends to 0 as k — oo.

Proof. Tt is well known that the incomplete gamma function

F(a,z):/ e tdr
Z

has the property that

k Zj
F(k—f—l,z):k!efz —'
j=0J"

1 < “ ok
ok(r) = 5 [/o r*e ’dt—/mztke ’dt}

1
=5 (k! —T'(k+1,ar%)]

It follows that

— 1 _ e*(sz i (arZ)j

=

)



168 4 Interpolating and Sampling Sequences

which is clearly decreasing in k and tends to 0 as k — co. O
Lemma 4.28. [fZ is a sampling sequence for Fy, then D~ (Z) > o/ 7.

Proof. By Lemma 4.10, Z contains a separated subsequence which is also sampling
for F;. Therefore, by working with such a subsequence if necessary, we may
assume that Z is already separated.

In view of Lemma 4.26, we just need to show that D™ (Z) > a/m. So let us
assume the contrary and write D™ (Z) = o./z(1 + 2¢) for some positive number &
(the case D™ (Z) = 0 can be handled similarly). We will show that this leads to a
contradiction.

Recall that

Z,B
D (2) — limint inf "2 B0

r—eo weC wr? ’

where n(Z,B(w,r)) is the number of points in Z N B(w,r). So the assumption
D~ (Z) = a/n(1 +2¢) implies that there exist sequences {r,} and {w,} such that
r, — oo and

n(Z,B(wy,rn)) o

r’ 1+¢’ nzl
Let
Ry=r,/V1+€e  B,=B(0,r,)=B(0,VT+eR,),
and

N, =n(Z,B(wy,rm)) =n(Z,B(wp,V1+€Ry)).
Then N, is the number of points in (Z — wy,) N B, and

2
arn 2
<N, < OoR:.
142~ " n

In particular, N;, — oo as n — oo,

To simplify the notation, we fix any n and write B = B,, R =R,, and N = N,,.
Let p = p, be “the” (unique up to a unimodular constant multiple) polynomial with
(Z —wp) N By, as its zero set, normalized so that ||p||2,¢ = 1.

We can write

N X N
p(2) = arfi(2), fi(z) = \/%Zk» Zb|ak|2 =1

k=0

It is easy to see that the functions {f; } are also orthogonal over the disk B:

/B (@) n(@) A (2) = 04 (VT T ER) S,
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where the constants oy are from Lemma 4.27. It follows from this and Lemma 4.27
that

. N
Jlp@F aate) = 3 lal” [ eI kot

N N
= |axPor(V1+€R) > Y |ax|*on(V1+€R)
k=0 k=0

1 ro(l+e)Rr?
on(V1+eR) = IW/ Ne ' dr
t'Jo

1 (1+¢)N 1 (1+¢)N
> IW/ Netdr > IW/ Ne tdr
- JN
NN (I4+¢)N NNe—N
2 T / e 'dr= 1\(:' (1—e ).

This, together with Stirling’s formula
N~ NVe™MV/N, N o,

shows that there exists a constant C = C(c, €) > 0 (independent of N) such that

C
d ) > >
/|P | ;La _\/— \/_
Since
o2
/|P(Z)|2dla( < (1—|—8) sup |p(z)e ~ %1z
B ZEB

we can find another positive constant C = C(¢, €) (independent of R) such that

> CR2

2
Pl > sup|p(2)e™ £
z€B

On the other hand, for any z outside B and 0 < k < N, we can write
2> =(1+0)R*, t>e¢,

and deduce from

B
>

k oo 2]
oR-)/
S 2 ( - ) eaR2
=0 J
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that

k
a2 o B ,
(@) Pe e = F(lﬂ)kRZke a(1+0)R

2\k o —OR?
(aR")%e o~ 0rR> +Klog(1-+1)
k!

—outR%klog(1+t)

IN

(S

< o~ WIR*+Nlog(1+1)

—otR>+otR? log(1+41)

IN

(S

Since ¢ > &, there exists another constant ¢ = ¢(a, &) > 0 (independent of R) such
that

|fk(z)|267(xlz\2 < e72cR2

for all 0 < k < N and z outside B. By the Cauchy—Schwarz inequality and the fact
that Y, |ax|*> = 1, we have

| ( |2 —alz? _ 706\z|2

2 arfi(z

< 2|ak| zm (2)[2e

< (N+1)e 2R < (aR® 4+ 1)e 2.

for all z outside B. From this, we deduce that

sup{|p(x)le 2z Z,n(C-B)}
< Var +1eF,

where Z, = Z — w,.
Finally, if we set

onz— % lwal?

gn(z) =e Pn(z—wn),

then

3
= || palleo,c = CRy *

Hgn

_ 2
gn|Zllee.cc = || Pal Zalloc < |/ ARE A+ 1R

and
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so that

llgnlZ| =0 - C/Réefc\Rn\z
lgnlleoce —

SN0
for all n > 1, where C’ and c are positive constants independent of n. Since R, — oo
as n — oo, we conclude that

Z||
lim Hg"| | 1Y =0.

n=e |8l e

This contradicts with the assumption that Z is a sampling sequence for F; and
completes the proof of the lemma. O

Lemma 4.29. Suppose 0 < p < o and Z is a sampling sequence for Ff. Then Z is
a set of uniqueness for F,.

Proof. By Lemmas 4.10 and 4.11, we may assume that Z is separated.

The case p = o is obvious. Suppose 0 < p < o, Z is sampling for F}, but Z is
not a set of uniqueness for F;. Then there exists a function f € F, not identically
zero, such that f vanishes on Z. Let g(z) = f(rz), where 0 < r < 1. Then g € F{,
g is not identically zero, and g vanishes on Z/r. This is impossible because by
Corollary 4.17, the sequence Z/r is sampling for F} when r is sufficiently close
to 1. Therefore, Z must be a set of uniqueness for F;. O

Lemma 4.30. Suppose 0 < p < o and Z is sampling for Fl. Then D~(Z) > o/ 7.

Proof. Again, by working with a subsequence of Z if necessary, we may assume
that Z is already separated.

Recall that W(Z) consists of all weak limits of translates of Z. Since every
translation of Z is also a sampling sequence for F/ with the same separation
constant, it follows from Proposition 4.16 that every sequence in W(Z) is sampling
for F(f as well. Combining this with Lemmas 4.25 and 4.29, we conclude that Z is a
sampling sequence for Fy. Thus, D~ (Z) > a/m by Lemma 4.28. O

This completes the proof for the necessity of the sampling condition D™ (Z) >
o /7 for F}). We now proceed to prove the sufficiency. This will be accomplished
with the help of the Weierstrass o-function and its variant g(z) discussed in
the previous section. The first step is to show that every sequence contains a
subsequence that is uniformly close to a square lattice Ay and whose uniform lower
density changes very little.

Lemma 4.31. Suppose 0 < o < B and Z is a sequence with D~ (Z) = 3/x. There
exists a subsequence Z' of Z such that Z' is uniformly close to Ay for some
o<y<p.

Proof. Fix y€ (o, ) and choose € > 0 such that y+ & < 3. The condition D~ (Z) =
B/ m implies that there exists a positive number r such that any square of side length
r contains at least (y+ &)r?/x points from Z.
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We decompose C into the disjoint union of a sequence of squares (half open, half
closed) of side length r: C = U{S : k > 1}. Since the area of each S; is 7 and the
area of the fundamental region of Ay is /v, each S contains r*/(n/y) = yr?/x
points from Ay (plus or minus a few points that can be neglected for our purpose).
But S; contains at least (y+ €)r?/x points from Z. So for each k, we can choose
|Ay N Sk| points from Z to match those in Ay N S;. We do this for each k, and the
result is a subsequence of Z that is uniformly close to Ay. More specifically, we
have |z, — Oun| < V/2r for all m and n, where /2 is the length of the diagonal of
each S;. O

We now prove that the condition D™ (Z) > o/x is sufficient for a separated
sequence Z to be a sampling sequence of FZ. For clarity, we break the proof into
three cases: 0 < p < 1,1 < p < oo, and p = oo,

Lemma 4.32. Suppose 1 < p < oo and Z is a separated sequence in C. If D~ (Z) >
o /7, then Z is a sampling sequence for F.

Proof. Given a function f € Fjy C F; we need to estimate the integral

- e

from above. By Lemma 4.31, we may assume that Z is uniformly close to a square
lattice Ag with B > o Let £ = R, be the fundamental region for the square lattice
Aq = {@Oyn} = {— Oy }. Then by Lemma 1.13 and a change of variables, we have

dA(z)

u kz,z./g e W 10| A,

where W,,, are the Weyl unitary operators defined in Sect. 2.6.

To estimate each summand on the right-hand side above, first observe that Z + @y,
is uniformly close to Ag as well, with a constant Q' that is independent of k and /.
Thus, we can use Proposition 4.24 to write

2 Way f (zmn + ) 8ay, (2)
m,n g/a)kl (Zmn + wkl) Z— Zmn — Wxy ’

ka,f(Z) =

where gq,, is the Weierstrass o-type function associated to the sequences Z + wy
and Ag.
For e = (f — o) /2, we can write

Way f (zmn + o) eie‘zm"wk'lzei%lzmnlz|f(zmn)|

= (4.17)
|g:0kl (Zmn + wk]) | eig‘zmn‘l‘wkllz |g/(l)k1 (Zmn + a)kl) |
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Letg=p/(p—1)sothat 1/p+1/g = 1. Then by Holder’s inequality and (4.11) in
Lemma 4.21, we see that Wy, f(z)|? is less than or equal to

Ch(z)z e*%lzmnlzf(zmn)‘pe*S‘Zanrwkl|2+C‘ZMI1+(DI<I|IOglzmn+wkl"
mn
where
L
_ 2 8wy, (2) !
h(z) = hu(z) = e~ Elmn+au| i ]
Q=m@=|3, —Sars

By Lemmas 1.12 and 4.22, the positive function /(z) is bounded on £ with an upper
bound that is independent of k and /. In particular, the integral

/ h(z)e T da(2)
Q

is dominated by a positive constant that is independent of k and /. Therefore, there
exist positive constants C and C’ such that

a 2 4 N
T2l —&zmn+ @ |*+¢lzmn+ g | 108 | 2n+ 0
1S CYY [e Fmb fgyy) || e elim ol sclam toulioz antoul

el mon

= CZ ’e*%kmﬂzf(zmn) ’ ze*8|2mn+wk1\2+C|Zmn+wki\10g|zmn+wk/|
mn [

< /

<cC

which is the desired estimate. Note that the last estimate above follows from
Lemma 1.12. O

Lemma 4.33. Suppose 0 < p <1 and Z is a separated sequence with D~ (Z) >
o /7. Then Z is sampling for F.

Proof. With notation from the proof of the previous lemma, we use the assumption
0<p<1toget

P
ka,f (Zmn + wkl)

gwk/ (Z)
Z— Zmn — Wiy

|ka,f(z)|p < 2

m,n

Combining this with (4.11) and (4.17), we obtain positive constants C and ¢, both
independent of k and /, such that

gw“ ! E(m,n,k,l),

P L 2
|kalf ‘e % zmn| f(Zmn)

—Zmn — wkl
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where
E(m n k l) — e*PS‘Zmn+wkl‘2+C|Zmn+wmn‘loglzmn+wkl|
s Ths Iy .

Integrate the above inequality over €2 with respect to ePolP/ 2dA(z) and notice that
Lemma 4.22 implies
A

for some constant C > 0 that is independent of k and /. We obtain another constant
C > 0 such that

Say (2) r

7170“Z|2
e 2 dA(z) <C
= Zmn — Wiy

I S sz‘efg‘Zmn‘zf(zmn) pE(m,n,k,l)

kI mpn

P
N E(m,n, k1)
kI

p

ef%‘z”‘”‘zf(zmn)

= CZ
mn

O3 et

m,n

=C|f1Zlp.a:

which is the desired estimate. O

Lemma 4.34. Any separated sequence Z with D~ (Z) > o/7t is a sampling
sequence for Fg.

Proof. With notation from the proof of the previous two lemmas, we have

/1

w00 = SUP Sk,
k|l
where

Sy = sup {e*%\1|2|kalf(z)| ze Q} .
To shorten the displays below, let
e(m,n,k,1) = o Elamn 0k +-clzmn+ @y 10g |+ |
Then by (4.17), (4.11), and Lemmas 4.22 and 1.12, we have

Su< Csup Z oSl __8ou'd) (2)

‘e*%km"‘zf(zmn) e(m,n,k,l)

2€Qmn 2= Zmn — Wy
< Cf|Z]lwcc 3 elmn k1)
mn
< CIf1Z] .0t

which proves the desired result. O



4.5 Sampling Sequences 175

This completes the proof of the sufficiency of the condition D~ (Z) > o/ x for Z
to be a sampling sequence of F. We summarize the main results of this section as
the following two theorems.

Theorem 4.35. A set Z is sampling for Fy if and only if Z contains a separated
sequence Z' such that D~ (Z') > o/ .

Theorem 4.36. Let Z be a sequence in C and 0 < p < oo. Then, Z is sampling for
F[ ifand only if Z is the union of finitely many separated sequences and Z contains
a separated subsequence Z' such that D~ (Z') > o./ .

Corollary 4.37. If Z is separated and 0 < p < oo, then Z is sampling for F}, if and
onlyif D~ (Z) > a/ .
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4.6 Interpolating Sequences

In this section, we characterize interpolating sequences for F, by the condition
D" (Z) < a/m. We begin with the sufficiency, which is still based on the modified
Weierstrass o-function associated to a separated sequence that is uniformly close
to a square lattice. The first step is to show that every separated sequence can be
expanded to a sequence that is uniformly close to a square lattice and whose uniform
upper density increases very little.

Lemma 4.38. Let Z be a separated sequence in C with DY (Z) = B/m and B < o
We can expand Z to a separated sequence Z' such that Z' is uniformly close to a
square lattice Ay with y € (B, ).

Proof. Lety € (B, o) and choose € > 0 such that < y— €. The condition D (Z) =
B/m implies that there is some large r such that any square of side length r contains
at most (y— €)r? /x points from Z.

Just as in the proof of Lemma 4.31, we decompose the complex plane into the
disjoint union of squares (half open, half closed) of side length r: C = US;. Each
Sy contains at most (y — €)r? /7 points from Z. On the other hand, each S contains
r?/(r/y) = yr*/m points from Ay. Therefore, we can add a certain number of points
in each S to Z to match the number of points in A, N S; so that the expanded
sequence Z' will be uniformly close to A,. It is easy to see that we can also do the
expansion in such a way that the new sequence Z' remains separated. O

Lemma 4.39. Suppose 0 < p < e and Z is a separated sequence. If DY (Z) < o/,
then Z is interpolating for FY,.

Proof. If we remove any number of points from an interpolating sequence for FZ,

what remains is still an interpolating sequence for Fy: we just assign the value 0

to f(z) for those removed z. So by Lemma 4.38, we may as well assume that Z is

uniformly close to the square lattice Ag = { @, } with D*(Z) = B /mand B < a..
For any sequence {ay;} of values for which

— 2 2
{akle 7 lzul e,

we claim that the interpolation problem f(zy) = ay is solved explicitly by the
function

f) = zamneazmnzfalzmn\z M7 (4.18)

m.;n 27— Zmn

where g,, denotes the generalized Weierstrass o-function associated with the
sequences Z — z,;; and Ay as givenin (4.8) (it is easy to see that Z — z,,,, is uniformly
close to Ay). More specifically,

gmn(z - Zmn)
Z—Zmn
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is equal to

(i on( )
(k1) (mom) 2kl — Zmn & —Zm 2
In particular,
gmn(Zmn — 2mn) = &mn(0) =1, gmn(zk — zmn) =0,
for (k,1) # (m,n). Since

2| gmn (2= Zmn)

)

o~ Slaml? amn‘ o= $le—zml

m,n <~ Zmn
the series above can be written as
a 2 2 Z—7Z
2 e*7|2mn| amn‘ 677|Z Zmn‘ e |Z*Zmn‘ gmn( mn) .
m,n <~ Zmn

By (4.10), there exist positive constants C, C’, and ¢ such that

#F17()

‘Zmn‘ ‘ *SIZ*Zmn ‘2+C|Z*Zmn I log ‘Z*Zmnl

o 2 1) 2
< Clz 'e*7|2mn| amn‘ e~ 2lz—aml

m,n

forall z € C, where 6 = (o0 — 3)/2. Since Z = {zn, } is uniformly close to the square
lattice Ag = {@un }, we can find another positive constant C such that

e 1) < C Y e Eimlay, [ eolmomk (4.19)

for all z € C, where ¢ = 0/4. Since the sequence {e’%k'"”'zamn} is bounded, it
follows from (4.19) and Lemma 1.12 that the series in (4.18) converges absolutely
to an entire function f with f(zy) = ay for all (k,[).

It remains for us to show that the function f defined in (4.18) belongs to Fy,. Just
as in the previous section, we break the proofinto three cases: 0 < p < 1,1 < p < oo,
and p = oo.

The case p = oo is the easiest. In fact, if the sequence e’“'z'""‘z/ 24, is bounded,
then by (4.19), there is a positive constant C such that

a2 2
e 2 f(2)| < Cze*G‘Z*wmﬂ .

m,n

This, along with Lemma 1.12, shows that f € F;.
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If 0 < p <1, it follows from (4.19) and Holder’s inequality that

PSCZ

m,n

p
amne*%kmn‘z e*/’G‘Z*wmn‘z'

(e 8EF

Integrate term by term and use the translation invariance of the area measure. We

see that
p/efpc\ZIsz(Z).
C

2
/‘ T f()| daR) <CY,
m,n
. . 2/0y +
This shows that f € F} whenever the series {a,,me""‘z'"”| /2} isin /7.
The case 1 < p < oo follows from complex interpolation. In fact, examining the
arguments in the previous two paragraphs, we see that the linear operator

{Cmn} — zcmnefclszmn‘z

m,n

amne* % IZmn |2

maps [ to L*(C,dA) and [' to L'(C,dA). Therefore, this operator maps I” to
LP(C,dA) for any 1 < p < . This, along with (4.19), shows that f € F, whenever

the sequence {amne’O"ZW"'z/z} belongs to /7. O

The lemma above shows that the condition D" (Z) < a/r is sufficient for a
separated sequence Z to be interpolating for FZ. Next, we will prove that this density
condition is also necessary.

Lemma 4.40. Let 0 < p < co. There is no sequence in C that is both sampling for
F[ and interpolating for F}.

Proof. Assume the contrary and let Z be a sequence that is both sampling and
interpolating for F}. Then Z is separated and sampling for F +8 for all sufﬁ01ent1y
small &, because we have characterized sampling sequences for F using the “open”
condition D~ (Z) > o/ .

Fix a point { € Z and use the assumption that Z is interpolating for F to find
a function g € F} such that g({) = 1 and g(z) = 0 for all z € Z— {{}. Then, the
function f(z) = (z — {)g(z) is not identically zero, belongs to FJ ., and vanishes
on Z. Thus, Z cannot possibly be sampling for F, .. This contradiction shows that
Z cannot be simultaneously sampling and interpolating for FY. a

Lemma 4.41. Suppose 0 < p < e and Z is interpolating for Ff. If Z is a set of
uniqueness for FY, then it must be a sampling sequence for Ff.

Proof. Since Z is interpolating for F, it must be separated by Lemma 4.8. Given
any function f € Ff, the sequence w,, = f(z,) has the property that {wne’o‘lz"lz/ N e
IP. By the definition of Ny, (Z), there exists some function g € F§ such that g(z;) = wy
for all k and ||g||p.« < Np(Z)||8|Z||p,a- Since Z is a set of uniqueness for Ff and

f(zx) = wk = g(zx) for all k, we must have g = f, and so || f|| p.a < Np(Z2)||f1Z]| p.«x
for all £ € F}. This says that Z is sampling for F,. 0
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As consequences of the two lemmas above, we obtain the following corollaries:

Corollary 4.42. Let0 < p <o and let Z be an interpolating sequence for Fl. Then,
there exists a function f € Ff, not identically zero, such that f vanishes on Z.

Note that the above corollary does NOT say that every interpolating sequence for
F[ is an FY-zero set because f may have additional zeros other than those in Z. In
fact, there exist examples of FJ-interpolating sequences that are not F}-zero sets.
See Proposition 5.11.

Corollary 4.43. Let 0 < p < o and let Z be a sampling sequence for Ff. For any
{ € Z, the sequence Z — {{} remains a sampling sequence for Fy.

Proof. This is clear from the already-proved characterization of sampling sequences
for F in terms of the lower density because deleting a single point from a sequence
does not alter the density of the sequence.

We give another proof that only relies on the fact that if Z is sampling for FZ,
then it is also sampling for F/ _ ¢ for sufficiently small €.

So suppose Z is sampling for F}, but Z' = Z — {{} is not, where { € Z. Without
loss of generality, we may also assume that Z is separated. Then, there exists a
sequence of unit vectors { f, } in F} such that || f,|Z’|| .. — 0 as n — . By a normal
family argument, we may as well assume that f;,(z) — f(z) uniformly on compact
sets. By Fatou’s lemma, we have f € Fj. From ||f,|Z'|| ).« — 0, we deduce that
f(z) =0forall z € Z'. Since

[/alZlp.c = 1/Mp(Z) >0

for all n, we see that f({) # 0. The function (z — §)f(z) is not identically zero,
vanishes on Z, and belongs to F, . for any € > 0. This contradicts the fact that Z is
a sampling sequence for F/, Le a

Thus, sampling sequences for F are stable under the following two operations:
deleting a finite number of points or adding any number of separated points from
outside the sequence.

Corollary 4.44. Let 0 < p < oo. If Z = {z,} is an interpolating sequence for FY,
then so is ZU{{} forany § & Z.

Proof. By Corollary 4.42, there is a function g € F§ that is not identically zero but
vanishes on Z. By dividing out an appropriate power of z — ¢ if necessary (which
preserves membership in F}), we may assume that g({) # 0. Multiplying g by a
constant if necessary, we may further assume that g(§) = 1.

Given a sequence {v} U {v,} of values with {vne’a‘z"‘z/z} € [P, we can find a
function f € FJ such that f(z,) = v, for all n. The function

F(z)=f(2)+(v—f(£))g(2)
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belongs to Fl and satisfies
F(C):Vv F(Zn):\/n, nzl

This shows that ZU {{} is still an interpolating sequence for Fy,. O

We see that interpolating sequences for F are stable under the following two
operations: deleting any number of points from the sequence or adding a finite
number of distinct points from outside the sequence.

A key tool for the rest of this section is the following quantity:

pp(2,Z) = sup|f(2)le F, 0< p<oo,
f

where Z = {z,,} and the supremum is taken over all unit vectors f in F} such that
f(z4) = 0 for all n. We think of p,(z,Z) as some kind of distance from z to the
sequence Z. A normal family argument shows that the supremum in the definition
of p,(z,Z) is always attained.

By Corollary 2.8, we always have 0 < p,(z,Z) < 1.Itis obvious that p,(z,Z) =0
when z € Z. We are going to show that p,(z,Z) = 0 only when z € Z, provided that
Z is an interpolating sequence for Ff,.

Lemma 4.45. IfZ is interpolating for Fl, where 0 < p < oo, then p,(z,Z) > 0 when
¢ Z

Proof. Actually, we only need to assume that Z is not a set of uniqueness (we
already know that every interpolating sequence for F/ is not a set of uniqueness
for F[). In fact, if f is any function in F that is not identically zero and vanishes
on Z, then f cannot possibly have a zero at z of infinite order. Therefore, by dividing
out a finite and nonnegative power of w — z, which does not ruin membership in £,
we arrive at a function in F that vanishes on Z but has a nonzero value at z. a

The following result is a quantitative version of Corollary 4.44.

Lemma 4.46. Let Z ={zy,22, - } and zo & Z. We have

142N,(2)

Np(Z0fz)) <

forall 0 < p < oo

Proof. We may assume that N,,(Z) < oo, that is, Z is an interpolating sequence for
F. Given a sequence of values {vg,vy,v2,--- } with the [’ norm of

a2 oy, 2 oy, 2
{voe ol e $f el }

equal to 1, there is a function f € FZ such that f (zn) = vy foralln > 1 and

1fllp.e < Np (D) f1Zl[p.c < Np(2).
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On the other hand, by Lemma 4.45, there exists a function fy € FJ such that f
vanishes on Z, || fo|| p,o < 1, and

ff%lz"szo(Zo) = pp(20,Z).

Now the function

B vo — f(20) o $leol?
8(z) = f(z)+ or0.Z) fo(z)

belongs to FL, solves the interpolation problem g(z,) = v, for all n > 0, and satisfies

[vo— f(20)l ,— [z
pp(20,2)
[vole™ 270" 4] (zo) e~ 1P
pp(20,2)
L+ (| £l p,x
* pP(Z()7Z)
14+Ny(2)
pP(Z()7Z)
1+2N,(Z)
pP(Z()7Z)
1+2N,(Z)

Y lgl(ZU{zo})l

l8llp.cc < (1 1p.e+

< Ny(2)+

p,a-

This proves the desired estimate. a

Lemma 4.47. Given positive constants &, ly, and o, there exists a positive
constant C = C (0, ly, o) such that if Ny(Z, o) <ly and d(z,Z) > &y, then p(z,Z) >
C. Here, ) < p < oo,

Proof. Let us assume the contrary, namely, there exists a sequence Z, of interpolat-
ing sets for F} and a sequence z,, of points in C such that

N]?(ZI’H(X) S lOv d(znazn) 2 507 n Z 17

and pp(zn,Z,) — 0 as n — oo.

By translation invariance, we may assume that each z, = 0. Going down to a
subsequence if necessary, we may also assume that Z, converges weakly to Z/,
where Z' may be empty.

By Lemma 4.18, N,,(Z', o) < . Also, d(0,Z,) > & shows that 0 is not in Z’. By
Lemma 4.45, there exists a function f € F/; such that f vanishes on Z', || || pa <1,
and f(0) = r > 0. We may further assume that

lim f(z)e £F = 0. (4.20)

%
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In fact, the above condition is automatically satisfied for f € F when 0 < p < oo,
If p = o, we modify the construction above as follows. Pick a complex number §
such that { ¢ Z’ and { # 0. Then Z' U {} is still an interpolating sequence for FY,.
Thus, there exists a function g € FY such that g vanishes on Z' U {{} and g(0) # 0.
Then the function f(z) = g(z)/(z — ) belongs to F/, vanishes on Z', satisfies the
condition in (4.20), and f(0) # 0.

Since {Z,} converges weakly to Z', the sequence &, = || f|Z,|| p,«. converges to 0
as n — oo, which follows easily from (4.20). Now, choose g, € F} with g, = f on
Z, and ||gx|| p,o < lo€, and define

_ f(2) —gnlz)
&) = et o™

For each n, it is clear that || f|| ), < 1 and f, = 0 on Z,. Since

lgn(0)] < Hgan,tx <lpg, —0

as n — oo, we also have
r
pP(Ovzn) Z |fn(0)| = A 07
11 p.cx

which is a contradiction.

Lemma 4.48. Given positive constants ly and a., there is a constant C = C(lp, o) >
0 such that if Ny(Z, o) < ly, then

/Qlogp,,(z,Z)dA(z) > —Clo)?

for every square Q with area |Q| > 1.

Proof. By the proof of Lemma 4.8, there exists a point zo € Q and a positive constant
6 = 6(a,lo) such that d(z0,Z) > 6. By translation invariance, we may assume that
zo = 0. It then follows from Lemma 4.47 that there is a function f with || f|| .o < 1,
flZ=0, and |f(0)| > o, where 0 = o(a, ) is another positive constant. Since

pr(e2) ze HFp@) zec
it follows from the subharmonicity of log|f(z)| that

o 1

2T .
log|f(0)] < Erz—l-ﬁ/o logp,,(rele,Z)dG

for all r > 0. Multiply both sides by r, integrate with respect to r from 0 to /2|0,
and observe that Q C B(0,+/2|Q|) and p,, < 1. The desired result follows. O

We can now prove the necessity of the condition D" (Z) < o/7 for Z to be an
interpolating sequence of FY.
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Lemma 4.49. Suppose 0 < p < ooand Z is an interpolating sequence for Fl). Then,
D (Z) < a/m.

Proof. We consider an arbitrary large square Q of side length R > 2 and divide it
into N = [R] x [R] squares Q;, 1 < j <N, each of side length s = R/[R], where [R]
denotes the integer part of R. It is clear that [ < < 2.

Since Z is interpolating for F}, it is separated. Thus, for each j, we can find
some point z; € Q; such that d(z;,Z) > &, where & is a positive constant that only
depends on N,(Z) and . Let Z; = ZU{z;} and use Lemmas 4.46 and 4.47 to find a
positive constant /, independent of j, such that N,,(Z;) <[ for all j. By Lemma 4.48,
we can find a positive constant C = C(/, o) such that

/Qlogpp(z,Zj)dA(z)z—a I1<j<N.
J

For any z € Q;, we choose a function f such that f vanishes on Z; —z, || f]| p.o < 1,
and f(0) =p,(0,Z; —z) = p,(z,Z;). By Jensen’s formula applied to the disk |{| < r,
where 2v/2 < r < R/2 (Jensen’s formula works for f(0) # 0, but the final estimate
below clearly holds for f(0) = 0 as well),

logp,(z,Z;) = log|f(0)]

de r

g/ log|f(re'?)| — log —log

. 2 gezggq lz— ]| |z —zj]
<9 —2 og" —log r
<5 Ll e

Ocrz r r
<4 _ log" —— —log——,
7 2, e s

LeznQ~

where Q™ is the square of side length R — 2r inside Q sharing the same center with Q
and having sides parallel to the corresponding ones of Q. In other words, Q™ consists
of those points whose distance to the complement of Q exceeds r. We integrate this
inequality with respect to area measure over Q, use Lemma 4.48, and obtain

—C< '/.logpp(z,Z.f)dA(Z)
.
<— 1 ~1Qjllog 75

Summing over j, we obtain

—CN* < or /log dA(z) — Rzlog
2 LeznQ~

2V2
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For any { € O, the disk |z— §| < r is contained in Q so that

e o
fog gm@ = [ et muE

2
Tr
dA(Z) = 7

= log L

ll<r 2|

Since N? < R2, it follows that

_ or? r
n(Z,Q )T < (T_bgﬁ—i_c) R?,

where n(Z,0~) denotes the number of points from Z contained in Q. This can be
rewritten as

_ 2

MO (R ) R
Fix r and let R — co. Then by Proposition 4.1,

o 2 r 2C
D (2) < - Wlogm—f— g
If » was chosen large enough so that
C—log - <0,
2v2

then D" (Z) < /7. O

We summarize the main result of this section as follows:

Theorem 4.50. Suppose Z is a sequence in C and 0 < p < eo. Then Z is an
interpolating sequence for Ff if and only if Z is separated and D" (Z) < o/ .

Corollary 4.51. Suppose Z is a separated sequence in C and 0 < p < oo. Then Z is
interpolating for Ff if and only if D* (Z) < o/ .
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4.7 Notes

The main results of this chapter are due to Seip and Wallsten, and our presentation
follows their papers [206] and [209] very closely. In turn, those two papers follow
Beurling’s 1977-1978 lectures on balayage and interpolation at the Mittag—Lefler
Institute very closely. In particular, the density notion introduced in Sect. 4.1 can be
found in Beurling’s lectures [36].

We chose to follow the more classical and original arguments of estimating
certain perturbations of the Weierstrass o-function because this is more in line
with the traditional approaches to entire functions. But we point out that there are
now more modern and more powerful techniques for interpolation and sampling
problems that work in much more general settings. For example, many ideas used in
[203,208] to characterize interpolating and sampling sequences for Bergman spaces
can be adapted to work for Fock spaces as well.

See [205] for a complete description of interpolating and sampling sequences
for Bergman spaces on the unit disk. The books [78, 119,203] contain more details
about the Bergman space results than Seip’s original papers. The interested reader
will find many additional papers in the bibliography about various interpolation and
sampling problems.
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Exercises 189

4.8 Exercises

10.

. Suppose Z = {z,} is a sequence of interpolation for F} and {v,} is a sequence

of complex numbers such that {vne’a‘zﬂ‘z/ 2} € [P, Show that the minimal
interpolation problem

inf { || f[lpee : f(zn) = vn,n > 1}

has a unique solution.

LIffe F(f for some 0 < p < oo and o > 0, then for any complex number a, the

function g(z) = (z— a) f(z) belongs to Fg forall0 < g <eoand 8 > a.

. Prove Theorem 4.2.
. Show that there exist two interpolating sequences for FJ whose union is

sampling for FY,.

. If Z is not a set of uniqueness for FZ, then p,(z,Z) = 0 if and only if z € Z.
. Show that for any € > 0, there exists a positive constant C = C(g, @, p) such

that

e 8 50 aaw)

w)e

p
< C/ f(
e<|w—z|<2e

forall z € C.

. Show that the incomplete gamma function has the property that

ij
Fk+1,2)=kle Y =

=0J!
for all k and z.
. Show that
N N 1
— ~logN
Zﬁ mgl rm? 0
as N — oo,
. Show that
1 1
n?+m?>N? (n? +m?)32 =N
as N — oo,

Let 0 be a positive number. Show that for any w € C, we have

>

1

——— 0 <|Om—w|<R| ~R
| @y — W

as R — oo, where A = { @y, } is any lattice.
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12.
13.

14.

15.

16.

17.

18.

19.

20.
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. Suppose Z is uniformly close to Ag. Show that

DY (Z)=D (Z2) = a/x.

Justify the last step in the proof of Lemmas 4.32 and 4.34.

If Z is an interpolating sequences for FY, then any subset of Z is also an
interpolating sequence for Fy.

Show that |G&(a)m,,)|e’%|“’m”|2 is a positive constant independent of m and n,
where oy, is the derivative of 0.

If Z is sampling for FZ, then adding any separated sequence to Z will create a
sampling sequence for FZ again.

If Z = {z,} is a sequence in C such that

. . 2
inf{|z; —z|: j#k} > NG

then Z is an interpolating sequence for F. See Tung [225].

If Z={z,} is a sequence in C and there is a positive number € < 1/y/a such
that the disks B(z,,€) cover the whole complex plane, then Z is a sampling
sequence for FY,.

Suppose Z = {z,} is separated and T is the operator from F to [” defined by

T(f) = {e*%‘h‘z f(zn)} : (4.22)

Show that:

(a) T is onto if and only if Z is interpolating for FZ.
(b) T is bounded below if and only if Z is sampling for FZ.
(c) T is one-to-one if and only if Z is a uniqueness set for F_.

Prove or disprove that T has closed range if and only if Z is either interpolating
or sampling for Ff,.

Suppose Z = {z,} is separated, 1 < p < e, and 1/p+ 1/¢g= 1. Then Z is an
interpolating sequence for F/ if and only if there exists a positive constant ¢

such that
J.

for every sequence {a;} € 4.
Suppose Z = {z,} is separated, | < p < oo, and 1/p+1/g=1. Then Z is a
sampling sequence for FZ if and only if every function f € Fg has the form

q oo
dA(z) 2 ¢ Y Jag|?
k=1

)y age $lal
k=1

PR

k=1

for some {a;} € 1.
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22.
23.

24.

25.
26.

27.

Exercises 191

Let u and v be two positive measures. If A; and A, are two sets that are
measurable with respect to both ¢ and v. Show that

. (v(A1) v(A2) V(A1 UAy) V(A1) v(Ay)
o <H(A1)’H(A2)> = p(A1UA2) Smax(ﬂ )

Make precise the word “roughly” used in the proof of Proposition 4.3.
For a sequence Z = {z,} of distinct points in C, show that the following
conditions are equivalent:

(a) Z is sampling for F2.
(b) Atomic decomposition holds on Z.
(c) The operator

oo

Sf(2) =Y, flan)enlal (4.23)

n=1
is bounded and invertible on F2.

Show that the operator S defined in (4.23) is bounded on Fa2 if and only if Z is
the union of finitely many separated sequences.

Handle the case D~ (Z) = 0 in the proof of Lemma 4.28.

Suppose Z = {zmn }, Aq = { Omn }» and Ag = { Ay }. If

|Zmn - Afmn| <Q

for all (m,n), then there exists a positive constant Q' = Q' (¢, 8, Q) such that
for any (k,1), there exists some (k’,) with the property that

| (zn + @kt) — (Aoun + Ao )] < Q'
for all (m,n).
Suppose Z = {zun} is uniformly close to A = A(®,®,0) = {Omn,} with

|zmn — @mn| < Q for all (m,n). Show that for any & > 0, there exists some
constant C = C(g,0, ®, ®;, ;) > 0 such that

Zefglz’"”lz <C.

m,n

Hint: write |z]* = |0 + (z— 0) > = |o*|1 + (z — ©) /0|






Chapter 5
Zero Sets for Fock Spaces

In this chapter, we study zero sets for the Fock spaces FZ. Throughout this book, we
say that a sequence Z = {z,} C Q is a zero set for a space X of analytic functions
in €2 if there exists a function f € X, not identically zero, such that Z is exactly the
zero sequence of f, counting multiplicities.
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5.1 A Necessary Condition

Recall from Theorem 2.12 that every function f € FJ is of order 2. Therefore, by
Hadamard’s factorization theorem, the zero sequence {z,} of f, with the origin
removed, must satisfy

o 1
ng'l|2n3<

In this section, we improve upon this estimate and obtain the following necessary
condition for a sequence {z, } to be a zero set for FJ.

Theorem 5.1. Suppose 0 < p < oo and {z,} is the zero sequence of a function f €
Ff with f(0) # 0. Then there exist a positive constant ¢ and a rearrangement of
{zn} such that |z,| > c+/n for all n.

Proof. Without loss of generality, we may assume that f(0) = 1 and p = . Let
{zx} denote the zero sequence of f, repeated according to multiplicity and arranged
sothat 0 < |z1| < |zo] < [z3] < -+

Fix any positive radius r such that f has no zero on |z| = r and let n(r) denote
the number of zeros of f in |z| < r. By Jensen’s formula,

n(r) r 1 2 i0
lo —:—/ log|f(re'”)|doO.
g&ng o ), loglf(reT)]
Since f € F;, we have

Fre )| < | fllewe®”,  0<0<2m,r>0.
It follows that

ZIOg— < —r +C,
|z

where C = 10g || f||e,.- Rewrite the above inequality as

)

<exp (—r +C)

k= 1|Zk| 2

and observe that
n(r)

H|Zk| =l

k= 1|Zk|

r
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for any positive integer n (independent of ). Then
r o
[l <exp (—r2 +C)
k=1 |Zk| 2

for all positive integers n and all » > 0 such that f has no zero on |z| = r. Since
{|zx|} is nondecreasing, we have

o
— <ex (— 2+C>,
|Zn|n = p 2}"
or
1 1
Lol ( %246, (5.1)
lzn| = 1 2n n

where n is any positive integer and r is any radius such that f has no zero on |z| = r.

There are only a countable number of radius r such that f has zeros on |z| = r.
Therefore, for any positive integer n, we can choose a sequence {r;} such that r, —
v/n as k — o and f has no zero on each |z| = r,. Combining this with (5.1), we
conclude that

1
< —exp| =+

1
[en] = v/ (2 n

It is then clear that there is some positive constant ¢ such that |z,| > c+/n for all
n>1. O

n>1.

o 10g|f||°°,a)

Note that the assumption £(0) # 0 is not a critical one. In fact, if f € F} and it
has a zero of order m at the origin, then the function g defined by g(z) = f(z)/z" is
in FY and does not vanish at the origin.

Corollary 5.2. Suppose 0 < p < oo and {z,} is the zero sequence of some f € F}
with f(0) # 0. Then

|
DM
n=1 |Z”|
for every r > 2.
The function
sin(67%)
fl@)= 52

used in the proof of Theorem 5.4 shows that the estimate in Theorem 5.1 is best
possible. More specifically, we can find a positive constant C in this case such that

C'Vn<|m|<Cvn

foralln > 1.
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5.2 A Sufficient Condition

The purpose of this section is to prove the following sufficient condition for zero
sequences of FJ,.

Theorem 5.3. Suppose that {z,} is a sequence of complex numbers such that

)Y
n=1

1
|Zn|2

< oo, (5.2)

Then {z,} is a zero set for Ff, where 0 < p < oo,

Proof. Suppose that {z,} satisfies condition (5.2). We may also assume that the
sequence {z, } has been ordered in such a way that {|z,|} is nondecreasing. Consider
the Weierstrass product

) = f[lEl (Zi) ,

where E;(z) = (1 —z)e®. By Theorem 1.6, f is entire, and {z, } is the zero sequence
of f. We will show that this function f belongs to all the Fock spaces F}, where
0<p<ecoand a > 0.

If |z| < 1/2, we have

log|E|(z)| = Re [log(1 —z) +7]

2 3 4
1 Jz | |z

O I e el I ol I

< |7 {2+ 3 + 1 +

1 5 1 1

< 1l — 4.

_2|z| {+2+22+ ]

= |-

On the other hand, we have
Ei(2)| < (1+z))el,  log|E(z)] < [o] +log(1+z]), (5.3)

for all z. It follows that for any positive A, there exists a positive number R such that

log|E1(z)| <Alz|*, |zl >R
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On the annulus 1/2 < |z| < R, the function |z|>log |E} (z)| is continuous except at
z =1, where it tends to —e. Hence, there is a constant B such that

log|E1(2)| < Blz[?, < |z <R.

N —

Combining the estimates from the last three paragraphs, we conclude that
log|Ei(z)| <Mz, z€C,

where M = max(1,A, B).
Given any positive €, we can find a positive integer N such that
- 1 £

> Wl S

n=N-+1 |Zn
From this, we deduce that

=

Y loglEi(/a) <M Y,

n=N+1 n=N+1

2
Z

<&.p2
=z
| <K

for all z € C. Using (5.3) again, we can find some r; > 0 such that

log|E) (z) 2, 2>,

|_ZS

where

_y !
n=1 |Z” 2
Set r» = ri|zn|. Then |z| > r, implies that |z/z,| > ry for 1 <n < N. It follows that

N € )
Y log|Ei(z/z)| < 1R s

n=1

Therefore,

log|f(2)] = Y, log|E1(z/z)| < elzl®

n=1

for all |z| > rp, or |f(2)] < e for all |z| > rp. Since € is arbitrary, we see that
feFyforalla>0and0< p<eco 0

Note that the proof above can easily be adapted to show that the function P(z) f(z)
belongs to Fj for any polynomial P(z). Therefore, if {z,} satisfies (5.2), then
{z,} U F is also a zero set for Fj, where F is any finite set. It is permitted to
have the origin contained in F'.
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5.3 Pathological Properties

In this section, we present examples to show certain pathological properties of zero
sequences of Fock spaces. More specifically, we will show that:

(i) The union of two zero sequences for F is not necessarily a zero sequence for
F[ again.
(i) A subsequence of a zero sequence for F} is not necessarily a zero sequence for
F[ again.
(iii) If o # B3, then the spaces F} and Fg have different zero sequences.
(iv) An interpolating sequence for F; is not necessarily a zero sequence for F.

Theorem 5.4. Suppose a0 > 0 and 0 < p < co. There exist two zero sequences for
FL whose union is no longer a zero sequence for FL.

Proof. Fix 0 € (mo,/8,/2) and consider the sequence

z= {2 /um]6 k=0,1,23n=1,23, }.

It is easy to see that Z is the zero sequence of the entire function

sin(8z2
7l =208,

Converting the sine function above to complex exponential functions and using
the assumption that § < o/2, we easily check that f € F}. Therefore, Z is a zero
sequence for Ff.

Let Z' = {e”‘/ 47: 7€ Z} be a rotation of the sequence Z above. Then Z’ is also
an FJ zero sequence. Clearly, Z and Z' are disjoint. We now arrange ZUZ' into a
single sequence {z, } such that

lz1] <lz2| <z < -+

If {z,} is a zero sequence for F} C F, it follows from the proof of Theorem 5.1
that there exists a positive constant C such that
n

_<C 2’
1|Zk|

for all n > 1 and r > 0. Square both sides, replace n by 8n, and integrate from 0

to e with respect to the measure re=Br* , where B > o. We obtain another positive
constant C such that

5 <C

o Il

1
1l
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for all n > 1. It is easy to see that this reduces to
8n |
OB
nB) (n!)B

By Stirling’s formula, there exists yet another positive constant C, independent of n,

such that
8n
(86) N2 “c

ﬁ n* —

for all n > 1. This clearly implies that 8 < mf3. Since 3 can be arbitrarily close to
o, we have § < ma/8, which is a contradiction. This shows that {z,} is not an F
zero set and completes the proof of the theorem. a

Theorem 5.5. Let o > 0 and 0 < p < oo. There exists an F}, zero sequence {z,}
and a subsequence {z,, } which is not an F}] zero sequence.

Proof. Fix a positive constant 0 such that § < ¢¢/2 and consider the following entire
function:
eiéz2 -1

f(Z)ZW

It is easy to check that f € F{. Thus, its zero set

{11(2’1777”:1’2’37}U{il ziLTn:nzlvzv?’v"'}

is an F} zero sequence. Let {z, } denote the subsequence consisting of real elements
in the above set. We proceed to show that {z,} is not an F}, zero set.

Again, aiming to arrive at a contradiction later, we assume that g is a function in
F{ that vanishes precisely on {z,}. It is clear that p;(g) = m(g) = 2; see Sect. 1.1
for definitions and properties of these numbers. By Theorem 1.10, we always have
p(g) > pi(g), so g must be of order greater than or equal to 2. Combining this with
Theorem 2.12, we conclude that g must be of order 2. By Lindelof’s theorem (see
Theorem 1.11), the function g must be of maximum (infinite) type since the sums

1
S(r)="Y, 5 ~logr, r>1,
IZnISan

are clearly unbounded. By Theorem 2.12 again, the function g cannot possibly be in
FJ. This contradiction shows that {z,} is not an F}; zero set. 0

We now consider zero sets for different Fock spaces. The Weierstrass o-functions
play a significant role here.
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Recall that for any positive o,

Ag = {a)mn:,/g(m—i—in) :meZ,neZ}

is the square lattice in the complex plane with fundamental region

Q +1i ||<1 n||<1 n
= =X X - — - — .
¢ . Y a2V

The Weierstrass o-function associated to Ay, is the following infinite product:

2

, z z 1 z )

Oulz :z” 1- ex +-—1,
2(? m,n( wmn) p<wmn 2 o3,

where the product is taken over all integers m and n with @, # 0.

Lemma 5.6. Let 0 < o) < 0@ < op < oo. We have:

(a) Oq € F(fzforallo < p Lo,

(b) Oy €F£lf0rany0<p < oo,

(c) O €EFY.

(d) 64 & [, and so 64 € FY for any 0 < p < os.

Proof. 1t follows from the quasiperiodicity of oy, that if z = @y, +w and w € Qq,
then

6a(2)|e T = |og(w)le T (5.4)

. . 2 . .
Since the function |G (w)|e*™"/2 is bounded on the relatively compact set £,

there exists a positive constant C such that
2
loa(z)] <CeF,  zecC.
This clearly implies that 6, € F;; and 0y, € FO’ZZ forall 0 < p < oo,
If S is any compact set contained in the fundamental region of Ay, then there
exists a positive constant 6 such that
2
loa(W)le 2" >8,  wes.

This together with (5.4) shows that

16a@)e $° =68, z€S+ @,



202 5 Zero Sets for Fock Spaces

for all (m,n). This clearly shows that 6, & fi. Since F§ C fg for 0 < p < oo, we
have 6, & Fj; for any 0 < p < es. Also, F, C fg forall 0 < p < eo. So 04 & F,
forall 0 < p < e, O

Lemma 5.7. Suppose 0 < p < oo and f € Ff. If f(z) =0 for all z € Ag, then f is
identically zero.

Proof. By the Weierstrass factorization theorem, we can write f = hoy, where h is
an entire function. In view of the quasiperiodicity of oy, we have

Llr@e e aam =3 | ne+omr

where €, is the fundamental region of ©y. Let D be any small disk centered at 0
and contained in %.Qa. Then by Corollary 1.21, there exists a positive constant C

such that
[ r@e s aaco
JC

Since the function z — |A(z+ @) |? is subharmonic, there exists a positive constant
0 (independent of (m,n)) such that

22 |P

ou(z)e 2 dA(z),

2 CZ ./Qafp |h(z+ @mn)|” dA(2).

/ |h(z+wmn)|pdA(z)25/ 1h(z+ @) [P dA(2)
Qo—D Qg

for all (m,n). It follows that there is another positive constant C such that

e

This is impossible unless 4 is identically zero. a

4AE) = C [ @)1 dA().

Theorem 5.8. Suppose 0 < p < oo, 0 < g < oo, and 0y # 0. Then FOIZI and ng have
different zero sets.

Proof. Without loss of generality, let us assume that o < o¢ < 0. By Lemma 5.6,
the Weierstrass function oy, belongs to F(ZZ, S0 its zero sequence Ay, is a zero set for
Fg,. On the other hand, if f € F; C FZ and f vanishes on A, then it follows from
Lemma 5.7 that f is identically zero. Therefore, Ay cannot possibly be a zero set
for FY, . 0

The remaining question for us now is this: do F} and F;] have different zero sets
whenever p # ¢? As of this writing, there is no complete answer, but it is easy to
produce examples of such pairs that do not have the same zero sets. The simplest
example is Z = Ay, which is a zero set for F;, but not a zero set for any F(f when
0 < p < oo. This again follows from Lemmas 5.6 and 5.7.
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Similarly, the sequence Z = A — {0} is a zero set for Fj, when p > 2 because
the function f(z) = 04(z)/z belongs to F} if and only if p > 2. However, this
sequence Z is not a zero set for F2. To see this, suppose f is a function in F2,
not identically zero, such that f vanishes on Z. By Weierstrass factorization, we
have f(z) = [0x(z)/z]g(z) for some entire function g that is not identically zero.
Mimicking the proof of Lemma 5.7, we can show that

/Iz\>1

It follows from polar coordinates and the Taylor expansion of g that this is
impossible unless g is identically zero. This actually shows that Z = Ay, — {0} is
a uniqueness set for FO%. In the above arguments, the point O can be replaced by any
other point in Ag.

On the other hand, if Z is the resulting sequence when two points a and b are
removed from A, then the function

2

8(2) dA(z) < ee.

Z

Oq (Z)

fa) = (z—a)(z—b)

belongs to F2 and has Z as its zero sequence. Therefore, Z is a zero set for F2.
Consequently, it is possible to go from a uniqueness set to a zero set by removing
just one point. Equivalently, it is possible to add just a single point to a zero set of
F2 so that the resulting sequence becomes a uniqueness set for F2. This shows how
delicate the problem of characterizing zero sets for F is.

We can also show by an example that it is generally very difficult to distinguish
between zero sets for F/ and F,}. More specifically, for any positive integer N with
Np >2,if Zis an F§ zero set and if N points {z;,--- ,zy } are removed from Z, then
the remaining sequence Z’ is an F, zero set. To see this, let Z be the zero sequence of
a function f € Fg , not identically zero, then Z' is the zero sequence of the function

1)

(z—z1)-(z—2av)’

g(z) =

which is easily seen to be in F. Therefore, zero sets for F}, and F may be different,
but they are not too much different.

Let Z be a zero sequence for F} and let I denote the set of functions f in F}
such that f vanishes on Z. In the classical theories of Hardy and Bergman spaces,
the space I is always infinite dimensional. This is no longer true for Fock spaces.

Theorem 5.9. Forany 0 < p <eoandk € {1,2,---}U{eo}, there exists a zero set
Z for Ff] such that dim(Iz) = k.

Proof. The case k = o is trivial; any finite sequence Z will work. So we assume that
k is a positive integer in the rest of the proof.
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We first consider the case p = o and k > 1. In this case, we consider Z = Ay —
{ai,---,ar_1}, where ay,--- ,a;_1 are (any) distinct points in A, and

G(x(Z)
(z—a1)-(z—ar1)

f(2)=

It follows from Corollary 1.21 that f € F; and Z is exactly the zero sequence of f.
Furthermore, if % is a polynomial of degree less than or equal to k — 1, then the
function f(z)h(z) is still in Fy;.

On the other hand, if F is any function in F,; that vanishes on Z, then we can
write

0u(2)g(2)
(Z_al)"'(z_akfl)’

F(z) = f(2)8(2) =

where g is an entire function. For any positive integer n, let C, be the boundary of
the square centered at O with horizontal and vertical side length (2n+ 1)+/7/c. It
is clear that

d(Cy,Ag) > /1/a)2, n>1.
So there exists a positive constant C such that
|Ga(z)|ei%lz‘zzc, z€Cy,n>1.

This together with the assumption that ' € F; implies that there exists another
positive constant C such that

lg(z)| <Clz—a1|-- |z —ar—1] (5.5)

for all z € C, and n > 1. By Cauchy’s integral estimates, the function g must be a
polynomial of degree at most k — 1.

Therefore, when p = oo, k > 1,and Z = Ay, — {ay,- - ,ax_1 }, we have shown that
a function F € F; vanishes on Z if and only if

Ou(2)h(2)

F(z) = (z—a1) - (z—ar1)’

where & is a polynomial of degree less than or equal to k — 1. This shows that
dim(lz) = k.

When p = oo and k = 1, we simply take Z = A,. The arguments above can be
simplified to show that a function F' € F;’ vanishes on Z if and only if ' = coy, for
some constant c.
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Next, we assume that 0 < p < oo and k is a positive integer. In this case, we let N
denote the smallest positive integer such that Np > 2, or equivalently,

./|z\>1

Remove any N + k — 1 points {ay, - ,ayi,—1 } from A, and denote the remaining
sequence by Z. Then Z is the zero sequence of the function

P
dA(z) < ee. (5.6)

Oy (z)e’%‘zlz

N

Ga(Z)
(z—a1)---(z—anyk-1)’

which belongs to F in view of (5.6). In fact, if g is any polynomial of degree less
than or equal to k — 1, then it follows from (5.6) that g times the above function
belongs to 1.

Conversely, if f is any function in F, that vanishes on Z, then we can write

0a(2)8(2)
(z—a1) - (z—ansk-1)’

fz) =

where g is an entire function. Since F}, C F, it follows from (5.5) and Cauchy’s
integral estimates that g is a polynomial with degree less than or equal to N+ k — 1.
If the degree of g is j > k— 1, then

1
(@) N s

(z—a1) - (z—anpk—1) NH1=T7

This together with f € F} shows that (5.6) still holds when N is replaced by N +k —
1 — j, which contradicts our minimality assumption on N. Thus, j < k— 1, which
shows that I is k dimensional. O

The following result describes the structure of I when it is finite dimensional.

Theorem 5.10. Suppose Z is a zero set for F) and dim(Iz) = k is a positive integer.
Then there exists a function g € Iz such that I; = gP,_, where Py is the set of all
polynomials of degree less than or equal to k — 1.

Proof. First, observe that if dim(lz) = k < oo, then Z' = ZU {ay, -+ ,a;} is a
uniqueness set for Fy forall {ay,--- ,a;}. Here, the union in Z’ should be understood
in the sense of zero sequences, where multiplicities are taken into account. In fact,
if there exists a function f € FO’Z , not identically zero, such that f vanishes on Z’,
then the functions
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all belong to F4 and vanish on Z. Here again, if zeros of higher multiplicity
are involved, then some obvious adjustments should be made. It is clear that the
functions listed above are linearly independent, so the dimension of Iz is at least
k+ 1, a contradiction.

Next, observe that if dim(Iz) > m, then Z' = ZU{ay,--- ,a,} is not a uniqueness
set for Fj for any collection {aj,:-- ,an}. To see this, pick any m + 1 linearly
independent functions fi,-- -, f;;+1 from Iz, let

f=cfi+ - +cmi1fmrts

and consider the system of linear equations
cifi(aj)+ -+ cmprfmpr(aj) =0, 1<j<m.

Once again, obvious adjustments should be made when there are zeros of higher
multiplicity. The homogeneous system above has m equations but m + 1 unknowns,
so it always has nonzero solutions ¢;, 1 < j < m+ 1. With such a choice of ¢}, the
function f is not identically zero but vanishes on Z’, so Z’ is not a uniqueness set.

It follows thatif 1 < j <kand Z' =ZU{ay,--- ,a;}, then Z' is not a uniqueness
set for F}. We can actually show that Z’ is a zero set for F}. In fact, if f is a function
in FY, not identically zero, such that f vanishes on Z’ (but not necessarily exactly on
Z'), then the conclusion of the previous paragraph shows that the number of zeros
of f in addition to those in Z’ cannot exceed k — j. If these additional zeros a are
divided out of f by the appropriate powers of z — a, the resulting function is still in
F[ and vanishes exactly on Z'. Thus, Z’ is a zero set for F.

Fix a function g € I7 that has exactly Z as its zero set. If f is any function in Iz,
not identically zero, then just as in the previous paragraph, we can show that the
zeros of f must be of the form Z' = ZU{ay,--- ,a;}, where j < k— 1. Thus, we
can factor f as follows: f = gPe", where P € P,_; and h is entire. It is clear that
dividing a polynomial out of f, whenever the division is possible, always results in
a function in F. Therefore, the function ge” belongs to Ix as well. It follows that
the function ge — g = g(e” — 1) belongs to I. If & is not constant, then by Picard’s
theorem, e — 1 has infinitely many zeros, so ge” — g is a function in I, that has
infinitely many zeros in addition to those in Z, a contradiction. This shows that % is
constant and Iz C gP,_. A count of dimension then gives Iz = gP;_1. O

In the classical theories of Hardy and Bergman spaces, every interpolating
sequence is necessarily a zero sequence. We now show that this is not true for Fock
spaces.

Proposition 5.11. There exists an interpolating sequence for FL that is not a zero
set for FL.
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Proof. Fix some & > 2/y/a. For any positive integer k, let Z; denote the set of
k+ 1 points evenly spaced in the first quadrant on the circle |z| = k8, including the
end-points k6 and kdi. Let

z=JzZi={z.22. sz ).
=1

Since the distance between any two neighboring points in Z is
2kdsin— > 6,
: 4

the sequence Z is separated with a separation constant greater than 2/+/cc. This
implies that Z is an interpolating sequence for F}; see Exercise 16 in Chap. 4.

If Z is the zero sequence of some function f € F}, then by Theorem 5.1, the order
p of f is less than or equal to 2. On the other hand, for the sequence Z, we have
m = p; = 2; see Sect. 1.1 for the definition of these constants. By Theorem 1.10, we
have p > m = 2. Thus, p = 2, and Lindel6f’s theorem (Theorem 1.11) applies.

For r € (md,(m+1)0), we have

0= 3 53 g et

Jex | <r <k

B i 1 l4e ™k 2 1 cos(m/2k)
- & (k) 1 —ein/k & (k8)? sin(m/2k)

21 2i
T 2k~ e oem ™ T pgloe

as r — oo. This shows that S(7) is not bounded in r. By Lindel6f’s theorem, f has
infinite type. This contradicts with Theorem 2.12, which asserts that f must have
type less than or equal to o/2 when f is of order 2. Therefore, Z cannot be a zero
sequence for F. O
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5.4 Notes

Theorem 5.1, the necessary condition for zero sets of Fock spaces, was obtained in
[249]. Theorem 5.3, the sufficient condition for zero sets of Fock spaces, is classical
and follows from the general theory of entire functions. The proof of Theorem 5.3
here is basically from [67].

The results in Sect. 5.3 were mostly from [249,258]. The motivation for [249]
was Horowitz’s study of zero sets for Bergman spaces; see [127-129]. The
most intriguing results concerning zero sequences for Fock spaces are probably
Theorems 5.9 and 5.10, which were proved in [258]. One interesting problem that
remains open is the following: if p # ¢, do F£ and F; always have different zero
sequences?

Lemma 5.7 shows that A is a set of uniqueness for Ff when 0 < p < oo. This
result as well as its proof are from [209]. Proposition 5.11, which is a little surprising
when compared to the corresponding questions in the Hardy and Bergman space
settings, is from [225].
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5.5 Exercises

1. We say that an entire function f(z) belongs to the Nevanlinna—Fock class F; if

[1og* 1)1 a2a(z) < .
C

Show that the zero sequence {z, } of any function f in F; with f(0) # 0 satisfies
the following condition:
o o=l
—_— < [o%)
n=1 |Z" |2

2. Let a be a nonzero complex number. Solve the extremal problem

sup{Re f(0) : [|f 2. <1,/(a) = 0}.

3. Suppose Z is a zero set for F/, and k is a positive integer. Show that the following
conditions are equivalent:

(a) dim(Iz) <k.
(b) ZU{ay,--- ,ai} is a uniqueness set for Ff for all {ay,--- ,a;}.
(c) ZU{ay, - ,a;} is a uniqueness set for F} for some {ay,--- ,a;}.

4. Suppose Z is a zero set for F and k is a positive integer. Show that the following
conditions are equivalent:

(a) dim(Iz) =k.

(b) For any {ay,--- ,a;}, the sequence ZU {ay,- - ,a;_1} is not a uniqueness
set for F} but ZU{ay, - ,a;} is.
(c) For some {ay,--- ,a;_1}, the sequence ZU {ay,--+ ,a;_1} is not a unique-

ness set for F}, but for some {by,--- by}, the sequence ZU {by,--- b} is
a uniqueness set for FY.

5. If Z is a zero set for F}, then the sequence remains a zero set for F/ after any
finite number of points are removed from it.

6. Suppose 0 < p < o and Z is uniformly close to A,. Show that Z is a uniqueness
set for FY.

7. If Z = {z,} is a zero set for F}, then

<
3

for all € > 0, provided that |z,| # 0, 1. Show that this is false in general if € = 0.
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Suppose {z,} is the zero sequence of a function f € Fy, where f(0) =1,0 <
p <o, and {|z,|} is nondecreasing. Show that

LI C rae\%?
ErEAS YL
Hep=zt) Vi

for all n > 1, where C is a positive constant independent of n and f.

Suppose 0 < p < q < o, Z is a zero set for F,, and N is a positive integer with
Np > 2. Show that if any N points are removed from Z, the remaining sequence
becomes a zero set for FL.

Let Z be a zero set for F2 with O ¢ Z. Show that there is no function Gz € F2
such that Gz(0) > 0, ||Gzll2,¢ = 1, Z(Gz) = Z, and ||f/Gzl2,0 < ||f]l2, for
all f € FO% with f|Z = 0. See [119] for information about the corresponding
problem in the Bergman space setting.

Suppose f € Fy has order 2 and type /2. Then f must have infinitely many
zeros. See [22].

Show that the function

f2) = in&ﬁ

Zn

belongs to F but the function zf(z) is no longer in F{. See [22].

If Z is a zero set for F} and dim(/z) < oo, then every function in Iz has order 2
and type o/2.

If Z is a zero set for F} and dim(Iz) < oo, then any two functions in I whose
zeros are exactly those in Z can only differ by a constant multiple. Thus, there
is essentially just one function that vanishes exactly on Z.



Chapter 6
Toeplitz Operators

There is a rich history of Toeplitz operators, especially those on the Hardy space. In
particular, Toeplitz operators on the Hardy space provide ample examples of shifts,
isometries, and Fredholm operators. They also provide motivating examples in index
theory and the theory of invariant subspaces.

In this chapter, we study Toeplitz operators on the Fock space Faz. Problems
considered include boundedness, compactness, and membership in the Schatten
classes. The approach here is more closely related to the theory of Toeplitz operators
on the Bergman space that was developed over the past thirty years or so.

K. Zhu, Analysis on Fock Spaces, Graduate Texts in Mathematics 263, 213
DOI 10.1007/978-1-4419-8801-0_6,
© Springer Science+Business Media New York 2012
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6.1 Trace Formulas

Recall that for any fixed weight parameter ¢, the orthogonal projection
P:L} > F2

is an integral operator,

PAE) = [ K(ew)fOw) dha),

where
K(Z, W) — eazW

is the reproducing kernel of the Hilbert space FOZC.
Given ¢ € L™(C), we define a linear operator Ty, : F2 — F2 by

To(f) =P(of),  fEFL.

We call T, the Toeplitz operator on F2 with symbol ¢. It is clear that T, is bounded
with || T || < [|@]|.

Proposition 6.1. For any complex numbers a and b, and for any bounded functions
¢ and y, we have:

(l) Ta(p+by/ = ClT(p + bTy/
(ii) Ty=T;.
(iii) Tp >0 if ¢ > 0.

Proof. These follow easily from the definitions. We omit the routine details. O

One of the main differences between Toeplitz operators on the Fock space and
those on Hardy and Bergman type spaces is the lack of bounded analytic and
harmonic symbols in the Fock space setting. In fact, by the maximum modulus
principle, if an analytic or harmonic function on C is bounded, it has to be a constant.

By the integral representation for the orthogonal projection P, we can write

To(f)(2)

LKW 70000 d2a(w)

2 [ K rone g aaw).

This motivates us to define Toeplitz operators on FO% with much more general
symbols.
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If u is a Borel measure on C, we define the Toeplitz operator 7 as follows:

T(N@ =5 [ Kewfme " au(),  zeC.

Note that Ty, is very loosely defined here, because it is not clear when the integrals
above will converge, even if the measure u is finite, as the kernel function K(z,w)
is unbounded for any fixed z # 0.

To make things a little more precise, we say that a complex Borel measure y on
C satisfies condition (M) if

/&IK(zw)le*“‘W‘zdlul(w) <o 6.1)

for all z € C. Because of the exponential form of the reproducing kernel, it is clear
that the above is equivalent to

/'clK(z,w)lze*“'W'zdlul(w <o (6.2)

for all z € C. When du(z) = ¢@(z)dA(z), the measure u satisfies condition (M) if
and only if the function ¢ satisfies condition (/;). See Sect. 3.2 for the definition of
condition (/).

If u satisfies condition (M), then the Toeplitz operator 7, above is well defined
on a dense subset of FO%. In fact, if

N
flw) = z K (w,ay)
k=1
is any finite linear combination of kernel functions in F2, then it follows from
condition (M) and the Cauchy—Schwarz inequality that 7, (f) is well defined. Recall
from Lemma 2.11 that the set of all finite linear combinations of kernel functions is
dense in F2.

If p satisfies condition (M), the Berezin transform of u (see Sect.3.4) is well
defined:

i) = 2 [ ke)Pe P du(w) = & [ e du ()

where
ke(w) = K(w,2)/ /K (z,2) = e P

are the normalized reproducing kernels of F2.
If u is positive or if the Toeplitz operator 7, happens to be a bounded operator
on Faz, then it is easy to see that

ﬁ(Z): <Tl.lkZ7kZ>O(7 ZGC.

When du(z) = ¢(z)dA(z), we get back to Ty, and ¢.
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In the rest of this section, we focus on the case of trace-class Toeplitz operators.
We will obtain several trace formulas related to Toeplitz operators. These trace
formulas will then be used in the next two sections to study bounded and compact
Toeplitz operators.

The definition of the Berezin transform ¢ and the Toeplitz operator T, requires
that the function ¢ satisfy condition (/;). But in the study of Toeplitz operators, we
often need to require that ¢ satisfy condition (1), which is slightly stronger than
condition (1y).

If the Toeplitz operator Ty, is bounded on F2, we have

Tpf(2) /f K (z,w) dAe (w),

and it is easy to check that
Kz, (w,2) / P GOK (14, 2)K (w, 1) A (). 6.3)

See Sect. 3.1 for the definition of Kg(w,z) for any bounded linear operator S on F2.
If we further assume that ¢ satisfies condition (I5), then it is also easy to check that
the uniqueness of K7, implies

aK('az)_KT(p(WZ)J-FOZC (6.4)
forall z € C.

Theorem 6.2. Suppose ¢ is Lebesgue measurable on C and S is a bounded linear
operator on F2. If

(1) @ satisfies condition (1),

(2) Ty is bounded on FOZC,

(3) TyS is trace class,

(4) Je Jc o @)K (w,2)||Ks(w,2)[dAa (W) dAg(2) < e,

then we have

tr (7, / 0(2)Ks(z,2) dA(z /(p . (6.5)

Proof. By hypothesis (1), each function @K( - ,z) is in L?, and by (6.4), we can
write

KTq,( . 7Z) :aK( . 7Z)_H( . 72)7

where H( - ,z) L F2. By Corollary 3.12,

r(TyS) = /C () /C Kr, (z,w)Ks (w,2) dA (2)
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= [ dhatw) [ [9EIK (zw) — H ()| Ry (ow) a2

/d)ta /(p K(z.w)Ks (z.w) da(2)
_/d)La /(p K (w,2)Ks(w,2) dq(2).

Hypothesis (4) allows the application of Fubini’s theorem, which, along with the
reproducing property in FOZC and parts (3) and (8) of Proposition 3.9, leads to the
desired trace formulas. O

Taking S to be the identity operator, we obtain the following trace formula for
Toeplitz operators on the Fock space.

Corollary 6.3 Suppose ¢ satisfies condition (I). If Ty is in the trace class and
@ € L'(C,dA), then

w(Ty) = [ 9@K ) da@) = = [ o) (6.6)

Proof. When S is the identity operator, we have Ks(z,w) = K(z,w), so the condition

[ [ 10@IIK0w.2)]1&s5(0,2) dAa(w) dh() <
becomes
Llo@IKeadku) = 2 [ o))

O

Note that there exist symbol functions ¢ such that T, is in the trace class but
¢ ¢ L'(C,dA). See Exercise 10.

Corollary 6.4 Suppose ¢ is bounded and compactly supported in C. Then for any
bounded linear operator S on F2, the operator TyS is trace class and

/ 0(2)Ks(z,2) dAqa(z /(p dA(z). (6.7)

Proof. 1t is easy to see that hypotheses (1)—(3) of Theorem 6.2 are satisfied. To
check hypothesis (4) of Theorem 6.2, we write

1= [ 10()]d2a(2) [ [KsOn2) 1K (,2)]dAa ().
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From the definition Ks(w,z) = S*K( - ,z)(w), we deduce that
[ 1Ks(0.2)Pd2a () = 8K (- 2) B
It follows from this and the Cauchy—Schwarz inequality that
/(C|K5(W,Z)||K(W,Z)|d7ta(w) SIS Kel2,ol Kzl 2.0 < (11K (2,2)-

Thus,
ocS
1< 18 [ lo@IK (e 2kt = “21 [ [plaa

as ¢ is bounded and compactly supported. a

As a consequence of Corollary 6.4, we show that every trace-class operator on
FOZC can be approximated by trace-class Toeplitz operators in the trace norm, and
every compact operator on Fozc can be approximated by compact Toeplitz operators
in norm.

Theorem 6.5. Let C denote the set of all Toeplitz operators Ty, where @ is
continuous and has compact support in C. Then:

(1) Cis trace-norm dense in the trace class T ofFOZ(.

(2) Cis norm dense in the space X of all compact operators on FO%.

Proof. Let £ denote the space of all bounded linear operators on F,2. Then, it is well
known that T* = £ and X* = T, with the duality pairing given by (S,T) = tr (ST).

To prove (2), assume that C is not norm dense in K. By the Hahn—Banach
theorem, there must be a nonzero operator S in J such that

(Tp,S) =0, Ty € C.
By Corollary 6.4,
0= (Ty,S) = tr(T,S) /<p dA(2)

for all continuous functions ¢ with compact support in C. This implies that S=0.
So § =0, a contradiction which proves (2).
The proof for (1) is similar, and we omit the details here. O
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6.2 The Bargmann Transform

The connection between Toeplitz operators on the Fock space and pseudodifferential
operators on L?(R,dx) is established by the Bargmann transform, and the most
elementary way to understand the Bargmann transform is via the classical Hermite
polynomials.

Recall that for any nonnegative integer n, the nth Hermite polynomial H,(x) is
defined by

n
Hy(x) = (—1)" Z%e %

The first five Hermite polynomials are given by

Ho(x) =

H,(x) =

Hy(x) = 4x° -2,
H3(x) = 8x> — 12x,

Hy(x) = 16x* —48x% + 12.
In general, it is easy to check that each H, has degree n and
H,(x) = 2xH,_1(x) — H,_,(x), n>1,

which can be used to compute H, inductively. In particular, the leading term of
H,(x) is (2x)".

Lemma 6.6. For nonnegative integers m and n, let

L — /]R Hy () Hy (x)e ™ dx.

Then 1., = 0 for m # n and I, = 2"n!\/T.

Proof. For any polynomial f, we use integration by parts n times to get

Hy(x)f(x)e ™" de = (=1)" | f) e
. R dx
- /R £ ()6

If m <nand f = Hy, then f(”) =0andso I, =0.
If f = H,, then f(x) = (2x)" 4 ---, and so f") = 2"n!. It follows that

Iy = 2"n!/ e dx = 2"n1 /7.
R

This proves the desired result. a
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Theorem 6.7. For any nonnegative integer n, let

B (x) = <27‘)‘)i \/%e’w‘an(@x).

Then {h,} is an orthonormal basis of L*(R,dx).

Proof. 1t follows from a change of variables and Lemma 6.6 that {&,} is an
orthonormal set. In particular, for any positive integer N, the functions

hO(X),hl (X), T ahN(x)v
are linearly independent. It follows that the polynomials
H()(\/ 206)6),[’11(\/ 206)6),--- ,HN(\/ 206)6) (6.8)

are linearly independent in the vector space of all polynomials of degree less than
or equal to N. A dimensionality argument then shows every polynomial of degree
less than or equal to N can be written as a linear combination of the polynomials in
(6.8). Therefore, the condition

[ rm@a=0,  n>o,
R

implies that

/ FOP(x)e % dx =0

JR
for all polynomials P, which, according to Lemma 3.16, implies that f = 0 almost
everywhere. Thus, the set {/,} is complete in L*(RR, dx). O

We now define the Bargmann transform. Let f be a function on R satisfying the

.. 2. . .
condition that f(x)e/™~™ is integrable with respect to dx for any real 7. Then for
any positive parameter ¢, we can define an analytic function B, f by

1
Bafle) = (2?05) 4 /Rf (2o =82 gy zeC. 6.9)

This will be called the (parametrized) Bargmann transform of f.

Theorem 6.8. For any positive o, the Bargmann transform is an isometry from
L?(R,dx) onto F2.

Proof. 1t suffices for us to show that for any nonnegative integer n, we have By h, =

e,, Where
ai’l
en(z) =1/ Hz".
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To this end, first observe that if u = x — z, where x is fixed, then d/du = —d/dz. Tt
follows that
4" e d" e

. — _ln —Uu
e B S P

Uu=x
Therefore, by Taylor’s formula,

ZI’L

e’()"z)2 = 2 e’sz,,(x)—.
n=0

n!

Replace x by v/2cx and replace z by 1/ o¢/2z. Then

1
200\ 4 92 _ ¥
(2! o2 S o om)
k=0

T

Multiply both sides by £, (x) and integrate over the real line. The desired result
Bohn = e, then follows from the fact that {/;} is orthonormal in L?(R, dx). O

Proposition 6.9. The inverse of the Bargmann transform is given by

2w = () [reem e Fage, 6o

where f € F2.

Proof. Fix any polynomial f € F2 and any function g € L?(R,dx) that is compactly
supported. Since

B : L2(R,dx) — F2 C L2,

is an isometry, we have

(Ba'f,8)12m) = (BaBy'f,Bag)a = (f,Bag)a

= (%)i'éf(z)dla(z) / @emxz*“"z*%#dx

R

_ <27a)i/R@dx/cf(Z)ezaﬂmz%zzdla(z)

= <F7g>L2(R)7

where

Fl) = <27a)i/(cf(z)ezaxzax2%zzdla(z)_
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This proves the desired formula for B&l f, as the polynomials are dense in Fozc and
the compactly supported functions in L? (R, dx) are dense there. a

Proposition 6.10. Let a = r+is € C and k, be the normalized reproducing kernel
ofFO% at point a. Then

1
20\ # .
[B&lka](x) _ < :) 672a1(rD+sX)efax2, 6.11)
where e 20(rD+5X) g he pseudodifferential operator defined in (1.21).

Proof. Let ¢ = (20/m)'/4. By Proposition 6.9 and the reproducing property in F2,

Bkl (x) = ¢ /C;ez“xz’“)‘z*%fzka&) Ao (2)

2 _
= ce 3l ,ax2/ e2oni—F2eaaz d ), (7)
JC

— e %lal?—ox?+20xa— $a>

— e (P +s2)—ax+20x(r—is) — § (r—is)?
2

_20i irs— o2 _
— ce 20tixs+oirs—ox” 42 oxr—our

On the other hand, by (1.21),

2 2

e2ai(7ersX) —ox? _ —2aisxtoirs—o(x—r)

o S 2 -
e —e —e 20tisx+oirs—ox+20xr—or

This proves the desired result. a

Lemma 6.11. We have
[oeme e 6.12)
R

for all complex numbers z.

Proof. Recall that

ho(x) = (2_0:) : e o

T

is the first vector in the orthonormal basis {4,} of L?(R,dx). By Theorem 6.8 and
its proof, By (hy) = ep = 1, or equivalently,

200 2 a2
/_/e2axz72ax dx=ez?¢ .
T JR

Replacing z by —iy/27/0z and changing x to /7/(20()x, we obtain the desired
identity in (6.12). O
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The above lemma simply states that the Fourier transform of e ™ is e . In
what follows, the equivalent form (obtained by suitable changes of variables)

[eroe it g [ et (6.13)
R

will be more convenient for us to use.

Theorem 6.12. Suppose 6(w) = 6(u,v), with w = v+iu, is a symbol function and
0(D,X) is the Weyl pseudodifferential operator on L?(R,dx) with symbol o. Let
T =Bqo(D,X)B," on F2. Then T(z) = B2y 0 (3) forall z € C.

Proof. Recall that
o(D.X) :/ /3(p,q)ez”i(”D+"X)dpdq

// p,—q Zai(pDJqu)dpdq'

It follows from this and Fubini’s theorem that

T(z)= (Boo(D,X)B,, k.. k:) o
= <G(D7X)B&1k173&1kz>L2(R)

// pv_q <Zai(pDJFQX)’B&IkZ?’B&lkZ>L2(R)dpdq~

To simplify notation, let us write

p(p.q) = 2P+

for real p and ¢, and proceed to compute the integral
1= (EEPHNB e B .

Let z = r+is. By Proposition 6.10, Lemma 1.28, and the fact that each p(—r,—s)
is a unitary operator on L?(R, dx), we have

7ax2>

1= p(pq)p(—r—s)e™ ™, p(~r,—5)e™ ™) 2y,
2

i(—ps+qr —ox® e
= 22U (o (—r,—5)p(p.g)e ™ p(—r—5)e ™) 2 gy

2

— 2Pt (o (p, g)e” e )I2(R)>

where ¢ = \/20/7.
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By (1.21) and the change of variables x — x — (p/2),

S . . o 27 2
= 6‘2620“( ps+qr)/62qu+oc1pq o(x+p) —owx dx
JR

S —_ P\2_ o py2
— CZeZal( ps+qr)/e2a1qx ox+5) —a(x-5) dx
JR

_ CZCZO“( ps+qr)—%p /62a1qx 20ux dx.
R

It follows from another change of variables and Lemma 6.11 that
/ Q2eigr—2a? g [T / o 2miy/Ea-nd g
R 200 Jr
T 2 T _a2
=,/ — 2 — e 24
V 20° V 205
Therefore,

~ . [ 2 ~ [0 O 20i(—ps+qr)—$(p*+4%)
7= () fheo (Gr3o)e o

. . S
B /R /R G(p.q)emiCrsta T a) dpdg,

We rewrite 7'(z) as

/ / e2n’i(fps+qr)f%(p2+q2) dp dq/ / G(u, v)e72n'i(pu+qv) dudv.
RJR RJR
Interchanging the order of integration above, we see that T(z) is equal to

/‘ / ()'(u,v)dudv/ /6[7271:ip(s+u)f%p2]+[f2ﬂiq(7r+v)7%q2] dpdg.
RJR JRJR

Evaluate the inner integrals using Lemma 6.11 again. We obtain
T(z)= 2o / / o (u,v)e 2T+ r i) gy gy,
T JrRJR

Since z = r+1is and w = v + iu, we can rewrite the above formula as

~ 200 .
7(2) =2 [ owe 2 da(w) = B ().
C
This completes the proof of the theorem. a

The rest of this section is devoted to showing that every Toeplitz operator on F2
is unitarily equivalent to an anti-Wick pseudodifferential operator on L (R, dx).
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We begin with the unbounded operator A of differentiation on Fozc together with
its adjoint. Thus,

M@= Q. AR =) (6.14)

We show that, via the Bargmann transform B, these operators are unitarily
equivalent to certain familiar operators on L?(RR, dx).

Lemma 6.13. For any positive o, we have
By'ABy =X +iD=2, B A*B,=X—-iD=2", (6.15)

where X, D, and Z are the (unbounded) operators on L? (R,dx) defined in Sect. 1.4.

Proof. Let C.(R) denote the space of continuous functions on R having compact
support. Then C,(R) is dense in L*(R,dx). Given f € C.(R), we differentiate

Baf(Z) = (2_06) 4 '/RezO{XZ7aX27%zzf(x)dx

T

under the integral sign to obtain

1
Z o
ABof(z) = (z?a> /R@x — g)e2 a5 £ () do, (6.16)
This gives
ABaf = 2BaXf _A*Baf,
and hence

By ABy + B A By =2X. (6.17)

On the other hand, we can rewrite (6.16) as

1 /2 3 d 2_ g2
ABaf )=~ (22) [ o) 5 e A B ),

Apply integration by parts to the integral above. We obtain
ABaf - 21‘B (fo + A*Baf,

and hence
By ABy — By 'A*By = 2iD. (6.18)

Solving for BglABa and BglA*Ba from (6.17) and (6.18), we obtain the desired
results. a
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We now establish the relationship between anti-Wick pseudodifferential
operators on L?(R,dx) and Toeplitz operators on F2.

Theorem 6.14. Let
O-(Z) = G(sz) = zcnmznzm
be real analytic and

0(Z2,2°) = comZ"'Z™
be the anti-Wick pseudodifferential operator on L*(R,dx). We have
Ba0(Z,2°)B,' =T,, (6.19)

where T, is the Toeplitz operator on F2 with symbol ¢(z) = 6(Z,z) = 0(3).

Proof. By Lemma 6.13, we have
Bu6(Z,Z)B,"' =Y camA"A™.

Thus, for f € FOZC, we have

Boo(Z,2")B =D Cum (E) an( " f(2))-

If £ has the property that the function 7" f(z) is also in F2 (all polynomials, which
are dense in F2, clearly have this property), then we can write

() = /«: W (w)e% g ().
Differentiating under the integral sign n times, we obtain

;; (@f(@) = o /«: W (w)e ™ Ay ().

Therefore,
Boo(2,2°)B5 f(2) / [ Comi® W] £(w)e ddg(w)

= [ @067 (0)e™ ()
=Ty f(2).

This proves the desired relation. a
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6.3 Boundedness

In this section, we obtain necessary and sufficient conditions for the Toeplitz
operator T, to be bounded on F2. These conditions are based on the Berezin
transform or the heat transform at particular time points.

The main results of the section can be summarized as follows:

(a) If Ty is bounded on Fy, then Bg ¢ is bounded for all § € (0,20).
(b) If Bg is bounded for some B > 2a, then T, is bounded on Fozc.

(c) If ¢ >0, then T}, is bounded on F2 if and only if B, ¢ is bounded if and only if
(ﬁr is bounded, where r is any fixed radius. Here,

~ 1
- (2) = —5 dA
?r(2) 7 Do o(w)dA(w)

is the averaging function of ¢ with respect to area measure.
(d) If ¢ € BMO', then T, is bounded on F if and only if 7}, is bounded on F} if
and only if By ¢ is bounded.

The proof of (c) uses the characterizations of Fock—Carleson measures and
is almost straightforward. The result in (d) follows from (c) and the translation
invariant characterization of BMO'.

The proof of (a) depends on some general trace estimates and the semigroup
property of the weighted Berezin transforms. The proof of (b) requires certain
estimates from the theory of pseudodifferential operators.

We now get down to the details.

Recall that the standard orthonormal basis for F is given by

n
en(z): %Zn? n:07172737"'-

For any nonnegative integer n, let P, denote the rank-one projection from FO% onto
the one-dimensional subspace generated by e,. Thus,

Puf = (fren)en,  n>0,f€F2.

It follows from (3.3), the definition of Kg(w,z), that

Kp,(z,w) = en(z)en(w),  n>0.

For any parameter 7 € (—1, 1), we consider the operator

TV =(1-1)Y 1"P, (6.20)
n=0
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with the usual convention that 7(®) = P,. It is clear that the series above converges
in the norm topology of F2. By property (7) of Proposition 3.9, we have

Ko (eow) = (1-1) 3. K, (&)

n=0
= (1-1) iot”en(Z)W

= (1—1)e™™",

and the series converges uniformly on compact subsets of C x C.

Let || ||s, denote the norm in the trace class S;. Since each P, is a positive trace-
class operator with ||P,||s, = tr(P,) = 1, the series in (6.20) also converges in S}
with

s 1—t¢
TN, < (1=1) X [t |[Palls, = T (6.21)
n=0
and =
w(TW)y=1-1)Y " (p) = 1. (6.22)
n=0

Recall that for each a € C, we have the Weyl unitary operator W, on F2, a
weighted translation operator, defined by

Waf (2) = flz = alka(2) = " £ (2~ a).
We always have
W; =W_,, WanpW; = Tpor,; W; TyWa = Tpor,

where 7,(z) = z—a and t,(z) = z+ a. The translation invariance of the parametrized
Berezin transform also gives

Bﬁ(goofa) = (Bﬂ(P) © Tg, Bﬂ(‘Pota) = (Bﬁ(P) Olq.

Now for every r € (—1,1) and every a € C, we consider the operator
7 =W, TOW?.

Thus, To(t) = T(’), each Ta(t) is still in the trace class, and it follows from the well-
known trace identity tr (AB) = tr (BA) that

(T = e [TOW W] = e (TW) = 1

forallt € (—1,1)anda € C.
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Theorem 6.15. Suppose ¢ satisfies condition (1) and Ty, is bounded on FOZC. Then
w(T,T.") = Bgo(a) (6.23)

forall =1 <t <\/2—1, where B = a(1 —1).

Proof. We first prove the result for a = 0. The problem is reduced to checking
hypothesis (4) of Theorem 6.2. In fact, it would then follow from (6.5) that

tr (T(,, / ?(2)K7) (2,2) dAa(2)
(1) [ 0™ aha(c)

_ a(l_t)/;q)(z)efa(lft)\zlsz(z)

T
= Bﬁ(p(O)

Thus, we need to estimate the integral

1 l) = '[C|(P(Z)|d)ta(2)'/(c |K(Z7W)||KT(r)(Z,W)|dla(w)
= (l—t)/ |‘P(Z)|dla(z)/ |ea(1+[)zw|d/1a(w)

- / 9(2)e T a2
(l+t 2
— /| —1I" 44 dA(z)

OC —t a2, 2
e /C|<p<z>e $1)e-0005 aA ),

where

E—2—p).

4

5(t)_(x[1— (1:”2] L

By the Cauchy—Schwarz inequality, I < oo whenever §(¢) > 0. It is elementary that
fort € (—1,1), we have §(¢) > 0 if and only if —1 < ¢ < v/2 — 1. This proves the
desired result for a = 0.

In general, note that Tj, is bounded if and only if Ty, is bounded. Thus,

tr(T,T") = tw (T,W,TOW?) = e (W T, W, T")

= tr (Tper, T) = Bg (9 01)(0)
= Bgo(a),

completing the proof of the theorem. a
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As a consequence of the theorem above, we obtain the following necessary
condition for a Toeplitz operator to be bounded on F2, one of the main results of
this section.

Theorem 6.16. Suppose ¢ satisfies condition (1) and Ty is bounded on F2. Then
Bg @ is bounded for all B with 0 < 8 <20

Proof. Let B = (1 —1t) with —1 <t < 1. The condition —1 <t < V21 is
equivalent to or(2 — \/5) < B < 2a. Also, according to the trace-norm estimate in
(6.21), we have

. 1—1
177 s, = WG W s, =17 ls, < 5
Combining this with Theorem 6.15, we obtain
1—t¢
Byo(@)| =l (T T < Tl T s < 7= 1T
for all a € C. This shows that
1—t¢
1Bgo]l- < 1_—|t|||T<p|| <o (6.24)

whenever /(2 —v2) < B < 2a.
If0 < B < a(2—+/2) < o, we can find a positive number y such that

By Theorem 3.13, the semigroup property of the heat transform H;, we have H /g =
HyyH} /. In terms of the parametrized Berezin transforms, we have Bg = BB By
what was proved in the previous paragraph, or directly from By, ¢(a) = (Tpka, ka) o>
the boundedness of T;, on F2 implies ||By @l < || T || Since By is a contraction on
L~, we have

1Bg@lls = [1ByBalles < [|Baplle < [|T]|-
This completes the proof of the theorem. O

Our next goal is to show that if Bg¢ is bounded for some 8 > 2¢, then
Ty is bounded on FO%. This is accomplished with the help of the theory of
pseudodifferential operators.

Theorem 6.17. Suppose g satisfies condition (I,) and 6(D,X) is the pseudodiffer-
ential operator on L*(R,dx) with symbol

0(8,x) = 0(z) = B20g(2), z=x+ig.

Then Ty = Boo(D,X) B, and B2o06(Z) = Bug(2).
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Proof. Let T = Byo(D,X)B,'. By Theorem 6.12, we have
T(2) = B200(2) = B2aB208 (2)-
By the semigroup property (Corollary 3.15), we have
BraBrog = Bag = Ty.
It follows that the operators 7" and T, have the same Berezin symbol. Since the

mapping S — S is one-to-one, we conclude that T = 1. a

Theorem 6.18. Let g be a symbol function on C that satisfies condition (I). If there
exists some B € (2at,0) such that Bgg € L=(C), then T, is bounded on Fy.

Proof. Let 0(z) = By¢g(Z). In view of Theorem 6.17, the Toeplitz operator T, on
F2 is unitarily equivalent to the pseudodifferential operator 6(D,X) on L*(R,dx).
We proceed to show that the pseudodifferential operator ¢ (D, X) is bounded.

Let y be the positive number satisfying

1 1 1

20 B vy
By the semigroup property of the parametrized Berezin transforms, we have
0(2) = B2ag(z) = ByBpg(2).

Let ¢(z) = Bgg(z). Then ¢ is in L*(C), and

o(z) = % /((; o(w)e " aa(w).

Differentiating under the integral sign, we see that for any nonnegative integers n

and m, we have
oo ' _ w2
0 @)= [tz Wplw)e T aAGw),

where &y, is a polynomial of degree m + n. Thus, for all z € C, we have

an+m6
perl

o ylrw]?
< ||‘P|‘w/(c|hmn(z—w,z—w)|e 7w 4A (w)

N1 ylul?
= 19l [ I le™ " dA(w) <
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This shows that """ /d7"d7™ is bounded on C for all nonnegative integer n
and m. By Theorem 1.24, the pseudodifferential operator o(D,X) is bounded on
L?(R,dx). O

When the symbol function ¢ is nonnegative, we have the following characteriza-
tion for boundedness.

Theorem 6.19. Suppose ¢ > 0 satisfies condition (I,). Then the following condi-
tions are equivalent:

(a) Ty is bounded on FOZC.

(b) ¢ =Bqp € L”(C).

(c) Bgp € L™(C), where [ is any fixed positive weight parameter.
(d) @r € L™(C), where r is any fixed positive radius.

Proof. The equivalences of (a), (b), and (d) follow from the characterization of
Fock—Carleson measures in Sect. 3.4. In fact, when ¢ is nonnegative, we have

<%ﬁﬁazévfwmw

The densely defined positive operator Ty, is bounded if and only if there exists a
constant C > 0 such that

(Tof . fla <Clfl3a fE€Fg,

which is the same as
/(c|f|2(Pdla SC/(C|f|2dla» feF02c~

This condition simply means that the measure dp1(z) = ¢(z) dA(z) is Fock—Carleson.
The equivalence of (b) and (c) follows from Theorem 3.23. O

As a consequence of the above theorem, we obtain the following characterization
of bounded Toeplitz operators on FOZ{ induced by symbols from BMO'.

Theorem 6.20. Suppose ¢ € BMO'. Then the following conditions are equiva-
lent:

(a) Ty is bounded on FO%.

(b) @ =Byp € L=(C).

(c) Bgop € L*(C), where B is any fixed positive weight parameter.
(d) @, € L™(C), where r is any fixed positive radius.

Proof. By (3.22) of Theorem 3.34, there exists a constant C > 0 such that

[@o@:— @)1 ar,) <C
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for all z € C, where ¢,(w) = z— w. By the triangle inequality, we also have

@0 @:llL1ary) —19(2) <C

for all z € C, which is the same as
lo| —[¢] € L~(C).

Therefore, ¢ € L=(C) if and only if |@| € L”(C). It follows from this and the
characterization of bounded Toeplitz operators with nonnegative symbols (see
Theorem 6.19) that the condition ¢ € L*(C) implies that 7}, is bounded on F2.

Let ¢ = f+1ig, where f and g are the real and imaginary parts of @, respectively.
Since |f| < || and |g| < ||, and nonnegative symbols induce positive operators,
we see that the boundedness of 7|, implies that both 7|7 and 7}, are bounded on
F2.

Since f is real-valued, we can write f = f* — f—, where

f+:max(f,0), ffzmaX(O,—f),

are the positive and negative parts of f, respectively. It follows from 0 < f+ < |f]
and 0 < f~ < [f| that T;+ and T, are both bounded on F2. Thus, Ty =Tp+ — Ty is
bounded. Similarly, 7, is bounded. This shows that the condition ¢ € L*(C) implies
the boundedness of T, on F2. Since the inverse implication is obvious, we have
proved the equivalence of (a) and (b).

Recall from the proof of Theorem 3.36 that Bg¢ — ¢, is bounded when
(ONS BMO!. This shows that conditions (b), (c), and (d) are equivalent whenever
@ € BMO'. This completes the proof of the theorem. a
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6.4 Compactness

In this section, we discuss the compactness of Toeplitz operators on F2. The main
results are parallel to those in the previous section. All conditions in this section are
in terms of membership in the space Cp(C) which consists of continuous functions
f on C such that f(z) — 0 as z — oo. In several approximation arguments, we will
also need the space C.(C), consisting of continuous functions f on C with compact
support. It is clear that C,(C) is dense in Cy(C) in the supremum norm of Cy(C).

Theorem 6.21. Suppose ¢ satisfies condition (I,) and Ty is compact on Faz. Then
Bgo € Co(C) forall B € (0,2a).
Proof. Recall from Theorem 6.16 and its proof that, for any f € (0,2¢), there exists
a positive constant C = C(f) such that ||Bg f||.. < C||T¢|| whenever T; is bounded
on F2.

If Ty is compact on F2, then by Theorem 6.5, there exists a sequence {f,} of
functions in C,(C) such that

1T =Tp |l <

S| =

, n>1.

Therefore,

1
B3 @~ Bg ol < ClITy Tyl <

forall n > 1. Each f, has compact support, so Bg f, € Co(C). Since Cy(C) is closed
in the supremum norm, we conclude that Bg ¢ is in Co(C) as well. O

Theorem 6.22. Suppose g is a symbol function that satisfies condition (I). If there
exists some B € (20,00 such that Bgg € Co(C), then T, is compact on Fj.

Proof. As in the proof of Theorem 6.18, the Toeplitz operator T, on F2 is unitarily
equivalent to the pseudodifferential operator o(D,X) on L?(R,dx), where o(z) =
B¢g(Z). Furthermore, it follows from Theorem 6.18 that 7, and o(D,X) are both
bounded operators with

0(2) = Byp(2) = L [ plwe 7 aa(w)

where ¢(z) = Bgg(z). For any pair of nonnegative integers m and n, there is a
polynomial h,,,,(z,Z) such that

am+n6

@)= [ hmle—wz-motme ™ aaw).  ©29)

The integral transform 7" defined by

Tf(z)= /(chmn (z—w,Z2— v_v)f(w)cfﬂszl2 dA(w)
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is bounded on L*(C). See the proof of Theorem 6.18. If f is compactly supported,
say on |z| <R, then

Tf(z) = /\w\<R (2 — w,2— ) f(w)e "< dA ()
B / o (9,70) £ (2 = w)e ™" dA (w),
[w—z|<R

and so

TFQI Il [ Thalm)le ™ dA(w).

Jiw—z|<R

The convergence of the integral
/ o (7)1 A ()
C

clearly implies that 7 f(z) — 0 as z — eo. Thus, T maps C.(C) into Cy(C). Since
C.(C) is dense in Cy(C) in the norm topology of L*(C), we infer from the
boundedness of T : L~ (C) — L=(C) that T maps Cy(C) into Cy(C). This, along with
(6.25), shows that "o /dz" 97" is in Cy(C) for any pair of nonnegative integers
m and n. By Theorem 1.25, the pseudodifferential operator (D, X) is compact on
L?(R,dx), and hence the Toeplitz operator T, is compact on FOZ{. a

Theorem 6.23. Suppose ¢ is nonnegative and satisfies condition (I1). Then, the
following conditions are equivalent:

(a) Ty is compact on FOZ{.

(b) § € Co(C).

(c) Bgop € Co(C), where B is any fixed positive weight parameter.
(d) @, € Co(C), where r is any fixed positive radius.

Proof. The equivalence of (a), (b), and (d) follow from the characterization of
vanishing Fock—Carleson measures in Sect. 3.4. See the proof of Theorem 6.19 for
the connection to Fock—Carleson measures. The equivalence of (b) and (c) follows
from Theorem 3.23. a

The rest of this section is devoted to the compactness of Toeplitz operators with
symbols in BMO'.

Lemma 6.24. Suppose f € BMO! and f: Bo f is bounded. Then
TiK; = K:[P(fo @) o ¢: (6.26)

for all z € C, where P : L%X — FOZC is the orthogonal projection, Ty is the Toeplitz
operator on Faz, K. is the reproducing kernel of F2, and @,(w) =z —w.
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Proof. Since BMO! and the Berezin transform are both translation invariant, we see
that for any z € C, we have

foop. € BMOl, Bo(fog;) € L”(C).

In particular, each side of (6.26) is well defined.
By the definition of Toeplitz operators and a change of variables,

7K. () = PUK)(w) = [ £(00)K.(0)Rolu) 2o ()
- /C (9L K1) o T2l 1) (1)
= [ F(@ulw)e ™D g ).
On the other hand,
K(w)[P(F o @) (9:(w) = e / () d ()

= [ A(pulw)e ™ D ).

This proves the desired identity. a

Lemma 6.25. Suppose f € BMO' and f is bounded. Then there exists a positive
constant C such that

sup|P(f o ;) (w)| < Ce?*/4 (6.27)

zeC
forallw e C.

Proof. Recall from the proof of Theorem 6.20 that if f € BMO' and fis bounded,

then |f| is bounded as well. By translation invariance of BMO! and the Berezin
transform, there exists a positive constant C such that

Bo(|fo@])(w)<C, zweC.

By Theorem 3.29, there exists another positive constant C (independent of z) such
that

[ letwl1F o @] da(w) < € [ lgfu)|ahu(u)

for all entire functions g. In particular,

P9I = | [ 10 0 i)
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< [ 1£0 0.0l |aAa)
<c / %7 d ey (1)
C
= Cef?,
This proves the desired estimate. O

Lemma 6.26. Suppose f € BMO' and f = By f € Co(C). Then:

(a) Foranya e C, we have P(fo@.)(a) = Trop 1(a) — 0 as z — o
(b) Trop, 1 — 0 weakly in Fozc as 7 — oo,

Proof. By Theorem 6.20 and the fact that Tyop, = U.TyU;, where U, f = f o @k, is
a self-adjoint unitary operator, there exists a constant C > 0 such that ||y || < C
for all z € C. In particular, || Ty, 1|| < C forall z € C. Since

TfO(Pz 1 (a) = <TfO(Pz I’Ka>
and the set of all finite linear combinations of kernel functions is dense in Faz, we
see that (a) and (b) are actually equivalent.

To prove part (b), it suffices to show that

lim (T, 1,u") = 0 (6.28)

7—>o0

for every nonnegative integer n because the set of polynomials is dense in F2.
Fix a nonnegative integer n and a point a € C. Observe that

F(@.(a) = Fop.(a) = e (Trop Ku, K,

where

It follows that

Thus, for any positive radius r, the integral

L@ = Fle(u)a e dA(u)

Ju|<r
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can be written as

S

e = S E ik Pyl dA

V(Z> - 2 130 fop U U 14 1% (V)
k,j=0 k! ;! Jv|<r

& ok ko k+ 2(k+n)
(Tropu" ,u*™" / v " dA(y
; k+n f (%4 > |v|<r| | ( )
o a2k+n

=71 2 —)<Tfo¢zuk,u

k+n>r2(k+n+1)
Sk ktnt1)!

an
= 20D [CESI <Tf0¢zl7”n>+2rv”(z>} ’

where
a2k+n

< k  n+k\ 2k
; K(k+n+1 I

I (Tfoq,zu U

As 7 — oo, we have f(@. (1)) — 0 for every u € C. By the dominated convergence
theorem,

lim /,(z) = lim F(@-(w)ae " da(u) =0

e 2= Jlu|<r

for any r > 0. It follows that

Z—ro0

. o "
hm [m <Tfo(Pz 1 ,u > + Znn (Z) = 0 (629)

for any fixed r > 0. Since ||Tfoq,|| < C for all z € C, where C is independent of z,
we see that

Ci i U] [ el (9t
k!'(k+n+1)!

=Ci o2kt kl(k+n)! o
Sk ket 1)LV o2k
1~ ((X}'l)k

<Cat

for all » > 0, n > 0, and z € C. Given any € > 0, choose a small enough positive
radius r such that

Co’ [e“’z — 1} <E.
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Then by (6.29), we have

1)!
limsup [(Trop, 1,u") < (n+1) €.

700 o
This proves (6.28) and completes the proof of the lemma. O

We can now characterize the compactness of Toeplitz operators with symbols in
BMO! in terms of the Berezin transform.

Theorem 6.27. If f € BMO!, then Ty is compact on FZ if and only if f € Co(C).

Proof. 1t suffices to show that the condition fe Co(C) implies the compactness of
Ty on F2. The other implication is obvious.

So let us assume that f € BMO! and fe Co(C). We will actually prove that the
operator

Ty F2— L2,

is compact, which clearly implies the desired compactness of 7 : F2 - F2.
For any positive radius R, we consider the operator

ﬁ:mww&%@

where yr is the characteristic function of the open ball |z| < R and My, is the
operator of multiplication on L2, by xg. It follows from the boundedness of Tranda
simple normal family argument that each T,‘f is compact. Thus, the compactness of
Ty will follow if we can show that

: R
I%EBOHTf _Tf”F,%%L,ZI =0. (630)

Given g € F2, we have

(T — TF)g(z)

(1—xr)Trg(z2)
(1= xr(2))(Tr8,Kz) o
(1= xr(2)){8, T7Kz)

= [ 0)(1 = ze(a) TR () QA
Thus, Ty — Tf is an integral operator with kernel

Kf (2) = (1 - tal@) TR ()

By Schur’s test (Lemma 2.14), whenever there exists a positive function 4 on C such
that

LIKF ) h(2)d2a (@) < Cilw),  wec, 6.31)
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and

LIKF G ) dha) < Ca(z), zeC 632)

we then have
1Ty = TFI75 2 < C1Ca (6.33)

We will arrive at constants C; and C; such that the product C;C; tends to 0 as R — oo,
which then implies the compactness of 7.

Let h(z) = /K(z,2) = e 7 and consider the integrals
_ /CC KRz u)|h(u)dAa(u),  z€C,
from (6.32). It is clear that I(z) = O for |z| < R. For |z| > R, we have
1) = [ TR ()] /K ) a0
which by Lemma 6.24 can be written as
1) = [ 1K)IP(Fo 92) (g:(u) VK o) ()

Making the change of variables u — @, (u) and simplifying the result, we get
(-1)z| o=

- %/C“)(?O(&)(”N e’ §leul A (u).

Fix p € (1,e0) and 0 € (0t/4,0./2). Let 1 /p+ 1/q = 1. By Holder’s inequality,

1) = Z [ [IPGogutuple o] [er et e ] dau

IN

% {/C |P(fo (Pz(u))|l7eﬂ0usz(u)} ’

1
5 [/ qu|u|2|eqa(zu)Z|egzﬂlzulsz(u)} !
c

The second integral above can be written as

/ o B leP+aoluf? |
C

which is equal to

/ e FleraolP= G g4 (1)) = o 5P / e a(% o)l 4 ).
C

— LN+ G (z—u)z+ G (Z—w)z— B z—u)?

dA(u),
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On the other hand, it follows from Lemma 6.25 that for all z € C, we have
P(Fo (pz)(u>|ﬂe*ﬂ0\”\2 < Ce,,,(a,%)‘up?

with the function on the right-hand side above integrable with respect to dA. This,
along with Lemma 6.26 and the dominated convergence theorem, shows that the
constants

Cia=sup | [ IPGFogtu)lre 7 aa)]

lZ|>r L/C

tend to 0 as R — oo. Therefore, we can find constants Cj g such that C; g — 0 as
R — o and I(z) < C gh(z) for all z € C. This proves the desired estimate in (6.32).
The integrals

- %C |K}5(z,u)|h(z) dAq(z)

from (6.31) are slightly easier to estimate. In fact, by Lemma 6.24 and a change of
variables,

J(u)

I A

/'TK VK (z2) dAa(z)
= ;/C|KZ(M)||P(TO(pz>((p1(”))|ei%|z‘2dA(Z)

2 [IKea@lIPFo g @le 25 aa)

2t [ 1P(Foper)@)le £ aA(2).

By Lemma 6.25, there is a positive constant C such that

u) < Ce S’ / o P-4 gA(7) = Ce LI / 2P g4
C

This proves the desired estimate in (6.31) and completes the proof of the theorem.
O

Corollary 6.28 Ler f € BMO', o0 > 0, and B > 0. Then By, f € Co(C) if and only
if Bgf € Co(C).
Proof. Without loss of generality, assume that 0 < a < B. If Bgf € Co(C), then
by Proposition 3.21, By f € Cy(C). We do not need the assumption that f € BMO!
here.

If By f € Co(C), then by Theorem 6.27, Ty is compact on FOZC, which, according
to Theorem 6.21, implies that B, f € Cy(C) for all 0 < y < 2¢. Repeat this process
a certain number of times, we will then get Bg f € Cy(C). O
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6.5 Toeplitz Operators in Schatten Classes

For u > 0, we are going to determine when the Toeplitz operator 7, on F2 belongs
to the Schatten class S),. The case when p > 1 is relatively easy and will be taken up
first.

Recall that for any bounded linear operator 7" on F2 we define the Berezin
transform T by

T(z) = (Tk.,k.), z€C,

where k; are the normalized reproducing kernels in F2. If T is positive on F2, then

:%AT@M@

See Proposition 3.3. In particular, 7 is in the trace-class S; if and only if the integral
above converges. As a consequence, we obtain the following trace formula for
Toeplitz operators on the Fock space.

Proposition 6.29. Suppose [ is a positive Borel measure on C and satisfies
condition (M). Then T, is in the trace-class S if and only if u is finite on C.
Moreover, tr(Ty) = (a/m)u(C).

Proof. Since all integrands below are nonnegative, we use Fubini’s theorem to

obtain
w(f) = = [ B
= 2 [ e aa(e) [ e e )
= 2 [P au(w) [ e Para(2)
:—/dy ¢ u(c).

This also shows that tr (7, ) < e if and only if y(C) < ee. O
Lemma 6.30. If p > 1 and ¢ € LP(C,dA), then T,y € S).

Proof. If ¢ € LP(C,dA), then @ o1, € LP(C,dA) by a simple change of variables.
It follows that ¢ o, € LP(C,dAy) for every a € C. Thus, ¢ satisfies condition (/).
Since p > 1, @ also satisfies condition (/1) so that Ty, is densely defined on FO%

The rest is proved in exactly the same way that Proposition 7.11 in [250] was
proved. O

Lemma 6.31. Suppose r > 0, U is a positive Borel measure on C, and

K(B(z,r))
r?

br(z) =

, zeC.
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If Uy is in LP(C,dA) for some 0 < p < o, then U satisfies condition (M), and the
Toeplitz operators Ty, and Ty, are both bounded on Faz. Moreover, there exists a
positive constant C (independent of [t) such that Ty < CTj .

Proof. Let
C= '/(C[J(B(Z, )P dA(z) < ee.

For any a € C, we have
[ By <c
B(a,r/2)

When z € B(a,r/2), we have B(a,r/2) C B(z,r) by the triangle inequality. It follows
that w(B(z,r)) > p(B(a,r/2)), and so

nr?

Tu(B(a,r/2))” <C, aeC.

This shows that the function a — u(B(a,r/2)) is bounded. By Theorem 3.29 (with
p = 2 there), the measure U satisfies condition (M), and the Toeplitz operator 7, is
bounded on F2, which in turn implies that the function z + 1 (B(z,r)) is bounded.
Thus, Tj;, is bounded on F2 as well.

Given f € Faz, we use Fubini’s theorem to obtain

RIS f) = 2 [ 17 PR E) dha(o)

= [P u(BE) )

= [P 4ha@) [ 2oien () dua(w)

= [Lauom) [ 176)Pagun () 8Aal)

= S Lo [ 1@ ).

Combining the above identity with Lemma 2.32, we obtain a positive constant C
such that

CTy fof) = [ 1FO0) e (o) = (Tuf. 1)

This proves the desired result. a

Note that the condition fi, € LP(C,dA) for 0 < p < e implies that

lim | B(z.r))?dA(z) = 0.
i [ ) e
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Refining the arguments in the above proof then shows that p(B(a,r/2)) — 0 as
a — o, which implies that 7}, is compact on F2 and [i, € Cy(C).

For the remainder of this section, we let {a, } denote any fixed arrangement of
the square lattice #Z? into a sequence. We are now ready to characterize positive
Toeplitz operators in S, when p > 1.

Theorem 6.32. Suppose 1t >0, r > 0, and p > 1. If U satisfies condition (M), then
the following conditions are equivalent:

(a) The operator T, is in the Schatten class S),.
(b) The function [1(z) is in L (C,dA).

(c) The function (B(z,r)) is in LP(C,dA).

(d) The sequence {lL(B(ay,r))} isin IP.

Proof. That (a) implies (b) follows from Proposition 3.5. The elementary inequality
U-(z) < CHi(z) (see the proof of Theorem 3.29) shows that condition (b) implies (c).

If the averaging function [i,(z), which differs from u(B(z,r) by a constant, is in
LP(C,dA), then it follows from Lemma 6.30 that 7; is in S,,. Combining this with
Lemma 6.31, we conclude that 7}, is in S),. This proves that (c) implies (a). Hence,
conditions (a), (b), and (c) are equivalent.

To prove that condition (d) is equivalent to the other conditions, we first assume
that condition (b) holds, which implies that the function p(B(z,2r)) is in LP(C,dA).
Choose a positive integer m such that each point in the complex plane belongs to at
most m of the disks B(ay,r). Then

oo

m /C u(B(z,2r)PdA(z) > 3,

n=1

[ w2 aAQ).
JB(ap,r)

For each z € B(ay,r), we deduce from the triangle inequality that

w(B(z,2r)) = w(B(an,r)).

Therefore,

oo

’”./cLL(B(z,zr»"dA(z) > 77 Y, i(Blan.r))"-

n=1

This shows that condition (b) implies (d).
To finish the proof, we assume that condition (d) holds, that is,

oo

Y u(Blan ) <.

n=1

It is easy to see that we also have
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where {z,} is any arrangement of the lattice (r/2)Z>. In fact, for each point z; that
is not in the lattice {a,}, the disk B(z,r) is covered by six adjacent disks B(ay,r).
Therefore,

oo

S [ uBEr2)7aAG)

n=1

[u(Bzr/2)ya0) <

oo

<y /B o BB )0

n=1

nr? &
= N 1(B(zn,r))P < oo.

n=1

This shows that condition (d) implies (c), as the equivalence of (c¢) to (b) implies that
if condition (c¢) holds for one positive radius, then it will hold for any other positive
radius. This completes the proof of the theorem. a

Specializing to the case when

du(2) = Zo(3) dA(2),

we obtain the following corollary concerning Toeplitz operators induced by non-
negative functions.

Corollary 6.33 Suppose ¢ >0, p > 1, and r > 0. If ¢ satisfies condition (I,), then
the following conditions are equivalent:

(a) The Toeplitz operator Ty belongs to S).
(b) The Berezin transform @ belongs to LP(C,dA).
(c) The averaging function

5= 2z [ 000 dAW)

belongs to LP (C,dA).
(d) The averaging sequence {@,(ay,)} belongs to IP.

We now turn our attention to the case 0 < p < 1, which requires new ideas and
techniques.

Lemma 6.34. Suppose 1 >0, r >0, and 0 < p < 1. If u satisfies condition (M),
then the following conditions are equivalent:

(a) The function [1(z) is in L (C,dA).

(b) The function u(B(z,r)) is in LP(C,dA).
(¢) The sequence {{L(B(ay,7))} is in IP.
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Proof. We begin with the inequality

~ o

@) =2 [P aun < 23

TJc
For w € B(ap,r), we have
2= w2 > (|z2—au| — lan —w])? > |z — a|* — 2r|z— .

It follows that

1 o < - —a 2 riz—a
fi(z) < = Y e okmmli2ericaly (p(a,, r)).
n=1

Q

Since 0 < p < 1, Holder’s inequality gives

aE < (3

p o
n) )y e Pelianl t2pral—al (g (g, )P

n=1

It follows from this and Fubini’s theorem that
P dA ( ) A, T / efpa\zfan|2+2proc|zfa,,\ dA(2).
i@ S uslanr)y” [ ©
By an obvious change of variables, the integral above equals
/efpalz\2+2pra|z\dA(Z),
C

which is easily seen to be convergent. Thus, the condition { it (B(ay,r))} € IP implies
[ € LP(C,dA).

On the other hand, there exists a positive integer m such that every point in the
complex plane belongs to at most m of the disks B(a,,r). Thus,

oo

m ﬁ@MMQEZ/) [i(2)? dA(2).

C n—1Blan,r)
For any z € B(ay,r), we have

~ _ o 7oc\z7w\2 06/ falsz|2
=— [ e d > — e d
i) = = /C pon=2f u(w)

> S (B(ay, ).
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It follows that

m /C fi(2)"dA(z) > arle4ror i 1(B(ap,r))?.

n=1

Thus, g € LP(C,dA) implies that {u(B(a,,r))} € [P, which proves the equivalence
of conditions (a) and (c).

That condition (a) implies (b) follows from the inequality u(B(z,r)) < Ci(z)
observed in the proof of Theorem 3.29.

To prove that condition (b) implies (c), we assume that the function y(B(z,r))
is in LP(C,dA). Consider the lattice (r/2)Z? and arrange it into a sequence {z,}.
There exists a positive integer m such that every point in the complex plane belongs
to at most m of the disks B(z,,r/2). Therefore,

oo

n=1"8

m [ BB A 2

For each z € B(z,,7/2), the triangle inequality gives us that

W(B(z,r)) = u(B(zn,1/2)).
Thus,
m/u (z,r))PdA(z EETZ B(zn,1/2))"

By the equivalence of conditions (a) and (c), the function { belongs to
LP(C,dA). Applying the equivalence of (a) and (c) once more, we conclude that
{u(B(an,r))} € IP. This completes the proof of the lemma. O

Lemma 6.35. Suppose 1 >0, 0 < p <1, and U satisfies condition (M). If the
function L belongs to LP(C,dA), then the operator Ty, belongs to S,.

Proof. Since [ belongs to L”(C,dA) and fi dominates [, Lemma 6.31 shows that

T, is bounded. Thus, 7, = I and the desired result follows from Proposition 3.6.
a

We will need the following lemma, which can be found as Proposition 1.29 in
[250].

Lemma 6.36. If 0 < p < 2, then for any orthonormal basis {e,} of a separable
Hilbert space H and any compact operator T on H, we have

Hsp = 2 2 (Tew, ex)|”

We are now ready to characterize Toeplitz operators 7, in S, when 0 < p <1.
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Theorem 6.37. Suppose >0, r >0, 0 < p < 1, and U satisfies condition (M).
Then the following conditions are equivalent:

(a) Ty belongs to the Schatten class S),.
(b) 1 belongs to LP(C,dA).

(c) Uy belongs to LP(C,dA).

(d) {ur(ay)} belongs to IP.

Proof. The equivalence of (b), (c), and (d) was proved in Lemma 6.34. That
condition (b) implies condition (a) was proved in Lemma 6.35. Therefore, to finish
the proof, we will show that condition (a) implies (d).

To this end, fix some large R with R > 2r and use Lemma 1.14 to partition {a,}
into N sublattices such that the Euclidean distance between any two points in each
sublattice is at least R. Let {{,} be such a sublattice and let

V=" Ui

n=1
where y, is the characteristic function of B({,,r). Since T, € S, and u > v, we
have Ty < T, and so T, € S, with || Ty ||s, < [|Tyls,-

Let {e,} be an orthonormal basis for F2 and define a linear operator A on F2
by Ae, = k¢,, n > 1, where k¢ is the normalized reproducing kernel of F2at¢.
By the proof of Theorem 2.34, the operator A is bounded. Let T = A*T,A. Then
IT1ls, < AP Tulls,

We split the operator T as T = D 4 E, where D is the diagonal operator defined
on F2 by

=

Df = 2<Ten,en><f,en>en,

n=1

and E =T — D. Since 0 < p < 1, it follows from the triangle inequality that
I71Z, > 1DIIZ, ~ IE]S. (6.34)

Also, D is a positive diagonal operator, so

IDIIS, = > (Ten,en)” Z Tyke, ke, )” (6.35)
n=1 n=1

2V E (e sravo)
- <%>"2 (g av0)
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On the other hand, by Lemma 6.36, we have

IENS, < Zlkzl (Een,ex)|” %l Toke, ke )|
n=1k= n

p
= (%) / o (@kg e "L av(z)| . (6.36)

n#k
A straightforward calculation shows that

Lokl o gl
e 2 e 2

’kén (2)kg, (@)e | =

s0 (6.36) gives us
NP a2 oGl P
E|If <(= /e* T e 2 dvz) . 6.37
e, < (7) 3 () @ 637)

If n # k, then |{, — §| > R. Thus, for |z — §,| < £, the triangle inequality gives us
|z— k| > &. Therefore, for each z € C, at least one of [z — §,| > & and [z — §| > §
must hold. From this, we deduce that

o=t a4 l? a2 ae-tl? k=g
-2 2 T,

e e <e l6e T e

Plugging this into (6.37), we obtain

o P poR2 a=G? el P
IIEHé’pS(;) e’lﬁZ(/Ce4 e o dv(z)) . (6.38)

n#k

Since the measure v is supported on U;B({;,r), we have
e MGGl gy () = S / T A
/. @=3 [ e

e~ Tl Gl =Fl=Gl 1y (B(L;, ).

'MB

j=1

The last step above follows from the mean value theorem with

< :Z*(nvkvj) EB(CJ',F).

Since 0 < p < 1, it follows from Holder’s inequality that

R AL S Y= B ol Bl e
e 4 4 dv(z e T ,
A G
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and so

O\P _rap - — —BE|, g, BE 2
1E5, < (3) e FoF H(B(Gj,r))pe Flm el Rl

T nh=1j=1
ONP _pop & hnd pa 2_pa 2
_ - — Bz =G — B |z —
= (—) e 16 Zu CJ? Z T 2 =Gl 72—l .
n j=1 nk=1

If n # j, then |{; — {,| > R > 2r, so by the triangle inequality,

m—mszgww—m—m[ T QJ LI

This holds trivially for n = j as well. Thus,

= =

115, < () e B Y u@(Gr)y 3 e Fo-br-fi-ar
T

J=1 nh=1

- [ oo 2
N (%)pﬁglQz Y uBEn)r | Y e il ]

j=1 5

The last series above is clearly convergent. So we can find a positive constant Cs,
independent of R, such that

=

||EH§p <Ge 16 fok 2 B(gj,r))

Going back to (6.34) and (6.35), we deduce that
1T, = IDIIE, — I1EI5, > (q<m%ﬂ)z B(g;.7))

Since C; and C, do not depend on R, setting R > 0 large enough gives us

Mx

u(B(jn)’ < G|\ Tulls, .

~.
Il
-
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where Cs is another positive constant. Since this holds for each of the N subse-
quences of {a, }, we obtain

=

2. W(Blan,)" < GN| T, (6.39)

n=1

for all positive Borel measures pt such that

oo

2 W(B(an,r))P < oo.

n=1

Finally, an easy approximation argument shows that (6.39) holds for all positive
Borel measures p with Ty, € S),. This proves that condition (a) implies (d), and thus
completes the proof of Theorem 6.37. O

Again, specializing to the case when

du(2) = ~ () dA(2),

we obtain the following corollary concerning Toeplitz operators induced by non-
negative functions:

Corollary 6.38 Suppose ¢ >0, 0 < p <1, r > 0, and @ satisfies condition ().
Then the following conditions are equivalent:

(a) The Toeplitz operator Ty belongs to S),.
(b) The Berezin transform @ belongs to LP(C,dA).
(c¢) The averaging function

~ 1

¢r(2) (w)dA(w)

nr? JB(zr)

belongs to LP(C,dA).
(d) The sequence {Q,(a,)} belongs to 1.
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6.6 Finite Rank Toeplitz Operators

In this section, we consider the following problem: when does a Toeplitz operator
T, have finite rank on the Fock space F2? Tt turns out the problem is pretty tricky.
If u has compact support in C, we will be able to determine exactly when 7},
has finite rank. But on the other hand, we will also construct a radial function ¢,
not identically zero, such that 7y, = 0 in a natural way on the Fock space. This is
something unique for the Fock space setting. In particular, in the Fock space setting,
the Berezin transform ¢ — @ is not one-to-one if no additional assumptions are
made about ¢.

Let n be a positive integer and denote by P(C") the algebra of all holomorphic

polynomials on C". For any tuple k = (ky,--- ,k,) of nonnegative integers, we write
=gt k| = ki + -+ kn.
These are the monomials in P(C").
Given a permutation o on {1,--- ,n}, we write
0(2) = (zo(1), " »Zom))> 2= (21, ,z) €C".

A function f : C" — C is called symmetric if f(0(z)) = f(z) for all z € C" and all
permutations ¢ on {1,---,n}. We say that f : C" — C is antisymmetric if f(o(z)) =
sgn(o)f(z) for all z € C" and all permutations ¢ on {1,---,n}.

A set U C C" is called permutation-invariant if ¢(z) € U for all z € U
and all permutations ¢ on {1,---,n}. Obviously, the notions of symmetric and
antisymmetric functions can also be defined on any permutation-invariant subset
of C". In particular, if R is any positive radius, we let Cs(R) denote the space of all
symmetric, complex-valued, and continuous functions f on the closed ball B(0,R)
in C".

For any complex-valued function f on a permutation-invariant subset U of C",
we can define two functions, called the symmetrization and antisymmetrization of
[, respectively, as follows:

1
F@) = =T f0@), €U,
e
and |
fule) = = Ssen(0)f (o), z€U,
e
where the sums are taken over all permutations on {1,--- ,n}.

Let P(C") denote the subspace of P(C") consisting of all symmetric poly-
nomials. Similarly, let P,(C") denote the subspace of P(C") consisting of all
antisymmetric polynomials.

Let P*(C") denote the vector space of all conjugate linear functionals on P(C").
If u is a finite complex Borel measure with compact support in C, then the Toeplitz
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operator T}, is well defined on the dense set P(C) in FOZC. Furthermore, for any f €
P(C), we have T, (f) € P*(C) in the sense that

=2 [r@s@e “Fau@),  gep©)

Therefore, when restricted to polynomials, we can think of the Toeplitz operator 7},
as a mapping from P(C) to P*(C). If T, : F2 — F2 has finite rank, then so does
T, : P(C) — P*(C).

Lemma 6.39. Suppose U is a finite complex Borel measure on C with compact
support. If Ty, has rank less than n, then

pu(figy) - u(fug)
det| o |=o0 (6.40)

u(flgn) .u(fngn)

for all complex polynomials fi and g; in P(C). Here,

u(re) = =2 [ re@e e auz).

Proof. Given one-variable polynomials fi,- - , f,, the functionals Ty, (f1),-- -, Tu (fn)
are linearly dependent because 7}, has rank less than n. So there are coefficients
c1,- -+ ,Cn, not all 0, such that

ClTu (fl) +-- +CnTu (fn) =0. (6.41)

If {g1,--,gn} is another collection of polynomials of one complex variable, we
take the inner product of g; with both sides of (6.41) to obtain

u(hgy) - u(hg)\ [a 0

U(flgn) .u(fngn) Cn 0

Since the ¢;’s are not all 0, we see that the determinant of the matrix above must
be 0. O

Lemma 6.40. Suppose L is a finite complex Borel measure on C with compact
support. If Ty has rank less than n and

Qa1+ 2n) = & AP dpu (1) - dpa(an)
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is the product measure on C", then

/C f2du, =0 (6.42)

for all polynomials f € P(C") and all antisymmetric polynomials g € P(C").

Proof. Since the determinant is linear in each column, we can rephrase (6.40) as
follows:

LA ) Bl ) G dta(2) =0, (6.43)

where z = (z1,-+ ,z,) and

gi(z1) - g1(zn)
A(glv"'vgn)(z):de': :
gn(Zl> gn(Zn)

Inserting monomials f; into (6.43) and then taking finite linear combinations, we
see that (6.43) remains valid if the product fi(z1)--- fu(zs) is replaced by any
polynomial f € P(C"). In other words,

L, [(@Ag1, 7 ,8n)(2) dita(2) =0 (6.44)
forall f € P(C")and g € P(C), 1 <k <n.
If each g is a monomial in P(C), then the function A(gy, - ,gx)(z) is an
antisymmetric polynomial in P(C"). On the other hand, it follows from the
elementary identities

812 galzn)la = 7 3 (5200)21(zo(1)) 80 (Zo(n)

= A8

that any antisymmetric polynomial in P(C") is a finite linear combination of
functions of the form A(g1,---,gx)(z). This proves the desired result. O

Lemma 6.41. Let K be a permutation invariant compact set in C", let @ denote
the algebra consisting of all finite linear combinations of functions of the form Yo,
where y and @ are symmetric polynomials in P(C"), and let C5(K) denote the space
of symmetric continuous functions on K. Then @ is dense in Cs(K) in the sense of
uniform convergence.

Proof. Tt is clear that @y is an algebra that contains the constant functions and is
closed under complex conjugation. If it also separated points in K, the desired result
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would then follow from the Stone—Weierstrass approximation theorem. But it is
easy to see that @ does not separate points in K. In fact, if z € K and w = 6(z) =
(26(1)>"** »Z5(n))>» Where O is a permutation not equal to the identity, then z # w but
f(z) = f(w) forall f € ®;.

To overcome this obstacle, we define an equivalence relation ~ on K as follows:
z~wif and only if w = o(z) for some permutation o. Let K = K /~ be the quotient
space equipped with the standard quotient topology. It is clear that every function
in C4(K) induces a function in C(K’), the space of complex-valued continuous
functions on the compact Hausdorff space K’, and conversely, every function in
C(K’) can be lifted to a function in Cs(K). Also, it is easy to see that @ separates
points in K’. In fact, if the cosets of z = (zy,--- ,z,) and w = (wy,--- ,w,) are two
different points in K’ (in other words, if w is not a permutation of z), then the two
one-variable polynomials

n n
pu)=Tl—z),  q()=]]@-w),

k=1 k=1
either have different zeros or they have the same zeros with different multiplicities.
It follows that at least one Taylor coefficient of p differs from the corresponding
coefficient of g. Thus, there exists an elementary symmetric polynomial whose

values at z and w are different.

We can now apply the Stone—Weierstrass approximation theorem to conclude
that every function in C;(K) can be uniformly approximated by a sequence of
functions in @;. O

The main result of this section is the following:

Theorem 6.42. Suppose L is a compactly supported finite complex Borel measure
on C such that the rank of T, is less than n, where n is a positive integer. Then W is
supported on less than n points in C.

Proof. Recall that for z = (z1,"++ ,2n),

1 1 1
21 22 Z
V(z) = det . " = H(Zi — Zj)
. i>j
Zrll 1 ngl ZZ 1

is called the Vandermonde determinant, which is an antisymmetric polynomial in

P(C™).
Fix a compact set £ C C that contains the support of u. Suppose the support of
U contains n distinct points ay, - - ,a,. We will obtain a contradiction. To this end,

we choose a one-variable polynomial p € P(C) such that p(a;) # p(a;) forall i # j
and consider the multiple-variable polynomial

VI’(Zlv"' 7Zn) = V(p(Z]), 7p(zl1))

The choice of p ensures that Vy,(ay,--- ,a,) # 0.
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It is easy to see that V), is an antisymmetric polynomial in P(C"). Since the
product of a symmetric function and an antisymmetric function is antisymmetric,
an application of Lemma 6.40 to the functions y = y V), and ¢ = ¢V, where both
y; and @; are symmetric polynomials in P(C"), shows that

/ FIV,2dp, =0 (6.45)
CV!

for all F € @;. Since U, is supported on the permutation invariant compact set E” =
E X --- x E, it follows from Lemma 6.41 that (6.45) holds for all F € C;(E™).
The measure |V,,|2 dy, is permutation invariant, which implies that

L EWPan = [ EIV,Pdu,
Cl‘l CV[

for all F € C(E"), where F; is the symmetrization of F. Thus, (6.45) holds for all
F € C(E™). Consequently, [V,|>dy, is the zero measure so that the support of g, is

contained in the zero variety of V,,. Since a = (ay,- - - ,a,) is contained in the support
of u,, we must have V,,(al, -++,ap) =0, which is a contradiction. This shows that u
is supported on less than n distinct points in C. a

Corollary 6.43 Let ¢ be a compactly supported and locally integrable function on
C. Then the Toeplitz operator Ty on FO% has finite rank if and only if ¢ = 0.

In the rest of this section, we present an example to show that it is necessary to
assume that the measure  in Theorem 6.42 and ¢ in Corollary 6.43 are compactly
supported. These results will be false without this assumption. To better understand
the intricacy of the problem, we note that if ¢ is bounded, then it follows easily from
the integral representation of the projection Py, and Fubini’s theorem that

T(Pfa / 0z d)toc( )

for all polynomials f and g. A limit argument then shows that the above also holds
for all functions f and g in F2.

Proposition 6.44. There exists a radial function @, not identically zero, such that
T, =0 on F2 in the sense that

/ 0z dla( )=

for all polynomials f and g.

Proof. We start with two constants p and c satisfying

c_exp(%(Z—p)>, O0<p<l.
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Let z5° denote the branches given by

. n 3w
Zip = |Z|ipeilpe, 0 e |:—§, 7) .

Define a function f on the closed upper half-plane by f(0) = 0 and
f@)=exp(cz P+cz’), Im(z)>0,2#0.

Obviously, f is analytic in the upper half-plane.
For 6 € [0, 7], we have

Thus, for z = |z|e!® with 8 € [0, 7] and |z| > 0, we have

TP os (TP
0 < cos > <cos< > +p9>§1, (6.46)

and
f(z) = exp [|Z|fpef%‘(2fp)fpei+ |Z|pe”7i(2fp)+pei}
_ np
_ —(127P 4 7P _rP
exp [ ~(Jz| P + [2") cos (~ = +p0)
- . Tp
P _|,|P _rP
+i(l2) P — 2| )sm( : +pe)] :
In particular,
_ np
_ (121 4 12|P _rpP
(@) = exp [~(1zl P + |21 cos (=22 + ) |
for z = |z]e'® with 8 € [0, 7] and |z| > 0. This together with (6.46) shows that

limf(z) =0=f(0), limf(z) =0,

z—0 Z—roo

where z is restricted to the closed upper half-plane, so f is continuous on the closed
upper half-plane. Similarly, we can show that

limf®(z) =0, lim f®(z) =0, (6.47)

z—0 Z—roo

where k is any nonnegative integer and z is restricted to the closed upper half-plane.
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By the formula for | f(z)|, the restriction of f to the real line belongs to L' (R, dx).

In particular, the Fourier transform of f is well defined. Let g be the function e**
times the Fourier transform of f, namely,

g(x)e @ = / Fl)e s, —oo < x < oo,

Since f is analytic in the upper half-plane and continuous on the closed upper half-
plane, it follows from (6.47) and contour integration around the semicircle |z| =
Im(z) > 0, that g(x) = 0 whenever x € (—eo,0]. So the function g is supported on
(0,00).

By the Fourier inversion formula, we can write

X) = /7mg(t)e’°"2+2”i’xdt :/0 g(t)e @27 gy

for —ee < x < oo, Differentiating under the integral sign, we obtain
£H(0) = (2ni)’</0mg(z)t"e*“’2 dt,  k=0,1,2,3,-.
Since all derivatives of f vanish at the origin, we have
/:g(t)tkef‘)“2 dt=0,  k=0,123,.
Set ¢(z) = g(Jz|)- Then @ is a radial function, so
o) Fata(z) =0

whenever k # m. On the other hand,

/ 0(2)Z FdAg(z) = 20(/Omg(r)erHe*m2 dr=0
for all £ > 0. This shows that

0@ d2a() =0

for all polynomials f and g. a
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6.7 Notes

The systematic study of Toeplitz operators on the Fock space started in [28, 29],
where several important techniques were introduced that remain useful up to today.
For example, the use of the Berezin transform in function theoretic operator theory
began in [28].

The material in Sect. 6.1 is mostly from [30]. The Bargmann transform between
the Fock space F2 and L*(R,dx) has been a well-known and very useful tool in
analysis. Our presentation in Sect. 6.2 follows Folland’s book [92] closely. Theo-
rems 6.12 and 6.14 are well known in the theory of pseudodifferential operators.

The idea of using the operators T to study trace-class properties of Toeplitz
operators first appeared in [30]. Theorems 6.15-6.18, as well as their compactness
counterparts in Sect. 6.4, are all from [30]. The characterization of bounded and
compact Toeplitz operators with nonnegative symbols is very similar to the Bergman
space setting, and details are worked out in [132].

For Toeplitz operators with bounded symbols, the characterization of compact-
ness in terms of the Berezin transform is also analogous to the Bergman space
setting, which was first obtained by Axler and Zheng in [6] and later generalized
to BMO symbols by Zorborska in [259]. Our presentation here follows [15, 61]
closely.

When 1 < p < oo, the characterization of Toeplitz operators in the Schatten class
S, of the Fock space Fa2 is relatively easy and follows the Bergman space theory
very closely. However, if 0 < p < 1, there is a critical difference between the Fock
and Bergman space theories. More specifically, in the Bergman space theory, there
is a cutoff point when Schatten class Toeplitz operators are characterized using the
Berezin transform, while the cutoff disappears in the Fock space setting. The proof
of Theorem 6.37 here is simpler than the one first constructed in [132].

Theorem 6.42, the characterization of finite-rank Toeplitz operators induced by
compactly supported measures, is due to Luecking [153]. The proof in [153] is
purely algebraic and works in several different contexts, including Toeplitz opera-
tors on the Bergman space of various domains. The example in Proposition 6.44
was constructed in [105]. Note that Proposition 6.44 does not contradict with
Proposition 3.17 because the function in Proposition 6.44 is far worse than the
functions permitted in Proposition 3.17.
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6.8 Exercises

10.

. Let u be a positive Borel measure on C satisfying condition (M). Then the

following conditions are equivalent:

(a) u is a vanishing Fock—Carleson measure.

(b) || — ur|] — 0 as R — oo, where ug is the truncation of y on the disk
B(0,R).

(c) There exists a sequence of finite Borel measures L, each with compact
support, such that || — u,|| — 0 as n — .

Suppose p > 1. Show that there exists ¢ > 0 such that T, € S, but ¢ ¢
LP(C,dA).

. Suppose 0 < p < 1. Show that there exists ¢ > 0 such that ¢ € LP(C,dA) but

Tp &Sp.
Suppose

o(z) = e(5 3k,

Show that the Toeplitz operator T, is unitary on the Fock space F12 (x=1)
and the Berezin transform @ vanishes at oo and belongs to LP(C,dA) for all
0<p<oo.

. Recall that for any z € C, we have the self-adjoint unitary operator U, defined

by U.f(w) = f(z—w)k;(w). Show that if T;, is bounded, then

/c U.ToU.d2(2) = Ty,

where W(w) = @(—w) and the integral converges in the strong operator
topology.

. If T, is bounded, show that

A W.TpW, dig(2) = T,
Show that there exist functions ¢ such that ¢ € L*(C) but 7}, is not bounded
on F2.
Show that there exist functions ¢ such that ¢(z) — 0 as z — o but T}, is not
compact on F2.

. Suppose @ is radial, that is, ¢(z) = ¢(|z|) for all z € C. If ¢ satisfies condition

(I1), show that the densely defined Toeplitz operator Ty, is diagonal with
respect to the standard basis of FO% Characterize boundedness, compactness,
and membership in the Schatten classes for such Toeplitz operators in terms of
the moments of ¢@.

Suppose ¢(z) = el Show that T, is in the trace class, but [ [@|dA = eo.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

6 Toeplitz Operators

If ¢ is bounded and compactly supported, then T, belongs to S, for all
0 < p<oo.

Show that the set of bounded Toeplitz operators on F2 is not norm-dense in the
space of all bounded linear operators on F2. See [30].

Show that there exists no positive constant C such that || By @||- < C||Ty|| for
all . See [30].

Let Tq‘," denote the Toeplitz operator defined on F2 using the orthogonal
projection Py, : L2, — FZ. Show that

)
TEf(2) =Tg'" fijelr2)

for all polynomials f.
Show that the operator

o . 2 2
Ty, : Fy = Fy
is unitarily equivalent to the operator

a/r? | 2 2
T, 'Fa/r2 —>Fa/r2.
Suppose 1 < p < e and Bgg € LF(C,dA) for some > 2¢. Then the Toeplitz
operator Ty : Fozc — Fozc belongs to the Schatten class S,,. See [30] and [61].

Let ¢ be a complex constant and @(z) = e’ Show that Ty is bounded on F2
if and only if Byy ¢ € L™(C), Ty is compact on F2 if and only if Brq ¢ € Co(C),
and T, belongs to the Schatten class S, if and only if By, € LP(C,dA). See
[30].

Define T : F2 — F2 by Tf(z) = f(—z). Show that ||Ty — T|| > 1 for any
bounded Toeplitz operator T;, on Fozc. See [30].

Suppose T is a finite sum of finite products of Toeplitz operators on Fozc induced
by bounded symbols. Show that 7" is compact on FOZC if and only if Te Co(C).
Suppose ¢(z) = |£(z)]e =91, where £ is entire and & > 0. Show that T, is
bounded on F2 if and only if ¢ € L*(C), T, is compact on F_ if and only if
¢ € Cy(C), and T;, belongs to the Schatten class S, if and only if ¢ € LP(C,dA).
Show that H,(x) = 2xH,_(x) — H, _,(x) foralln > 1.



Chapter 7
Small Hankel Operators

In this chapter, we study small Hankel operators on the Fock space FOZC. Problems
considered in the chapter include boundedness, compactness, and membership in
the Schatten class S,. We will also determine when a small Hankel operator has
finite rank.

K. Zhu, Analysis on Fock Spaces, Graduate Texts in Mathematics 263, 267
DOI 10.1007/978-1-4419-8801-0_7,
© Springer Science+Business Media New York 2012



268 7 Small Hankel Operators



7.1 Small Hankel Operators 269
7.1 Small Hankel Operators

Recall that
.72 2
P:L;, = F,
is the orthogonal projection. Let

2

fa:{fzfeFozc}

and use P to denote the orthogonal projection from L%X onto Fi.

Suppose ¢ is a function on C that satisfies condition (/;). Using the integral
representation for P (and hence P) we can define an operator he on a dense subset
of F2 by

ol (2) = P9£)(2) = [ KOn2)p(w)(w) dha ().

In fact, as in the definition of Toeplitz operators, the assumption that ¢ satisfy
condition (/) ensures that A, f is well defined whenever

n

fz) =" aK(z,ar)

k=1

is a finite linear combination of reproducing kernels. The set of all such f is a dense
subspace of F2.

The operator h, is traditionally called the small (or little) Hankel operator with
symbol ¢. We say that A, is bounded on FOZ{ if there exists a constant C > 0 such
that ||y (f)||e < C||f||e Whenever f is a finite linear combination of reproducing

kernels. In this case, the domain of A, can be extended to the whole space F2.
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7.2 Boundedness and Compactness

In this section, we determine when the small Hankel operator /4 is bounded or
compact on the Fock space F2. We will focus on the case when ¢ belongs to L2 In
this case, we can further assume that ¢ is conjugate analytic. In fact, if ¢ € L2, then
¢ satisfies condition (), and it is easy to check that hy = hpZy. o) with P(9) € F2.

Theorem 7.1. Suppose ¢ € F2. Then, hg is bounded on F2ifand onlyif € F
that is, there exists a constant C > 0 such that

oc/2’

lp(z)] <Ce® P/, zec.

Moreover, we always have

1
Sllellez, < ligl < lollr,
Proof. First, suppose that /i is bounded on FO%. Then there exists a positive constant
C such that
(hgf.2) < IngllIfNllgll,  fgers

or

P00 dAa(w >’ <Iigllifllel,  foge F2

Let f = g = k. be the normalized reproducing kernels in FO%. Then

/k2 @(w) dAg(w )‘§|h(,,||, zeC. (7.1)

Rewrite this as

_ 2
el

[ arao)| < gl e
By the reproducing property in FO%, the integral above equals @(2z), so

_ 2
e p(22) < g, zeC.

Replacing z by z/2 shows that ¢ € F, and o F= oy < < ||hgll-
Next, we suppose that ¢ € F~ /2 SO that the function

y(w) =2p(2w)e M
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is bounded on C with ||y]l. = 2||(pHF;o/2. According to the reproducing formula

in F7,,
o) = ¢ (25) = /(C e?*/2 7 (2w) dAgg ()
= [ pam)dhaa(w) = Pu(¥) )

Therefore, if f and g are polynomials (which are dense in FOZ{), then

(gt 8) = [ £8P0 = 2, Paly)) = e, ¥) = [ SeT A

Thus, by Holder’s inequality,

(haf &) < [l [C [feldAe <2[loll, Il 11|l

This shows that the small Hankel operator /g is bounded, and we have the norm

estimate ||hg| < 2||go|\F;a/2. O

Theorem 7.2. Suppose ¢ € F2. Then hg is compact on F2 ifand only if f € ;/2,
that is,
lime " /4g(z) = 0. (1.2)

)
Proof. First, assume that ¢ is an entire function that satisfies condition (7.2). Then
there exists a sequence of polynomials {p;} such that

lim [|px = @l , =0
By Theorem 7.1, we have ||hg — hp, || — 0 as k — oo. It is easy to see that each /iy,
has finite rank and hence is compact. So hg is compact.

On the other hand, if g is compact, then it follows from the proof of Theorem 7.1
that
. —atfz|? _
lim ™% ¢(22) =0,

because k; — 0 weakly in FO% as z — oo. Replacing z by z/2 shows that condition
(7.2) must hold. O

Corollary 7.3. Suppose f is an entire function. Then f = Py(g) for some g € L*(C)
if and only if f € F,. Similarly, f = Py (g) for some g € Cy(C) if and only if
fe /2
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Proof. If f = Py(g) for some g € L”(C), then hy = hg is bounded, so by
Theorem 7.1, f € F;/z-

If f = Py(g) for some g € Cy(C), then we can approximate g in L=(C) by
a sequence {g;} of functions with compact support in C. Each hg, is obviously
compact and

(|7 — hg,

= [lhz-g Il < [lg — gkl = O
a2

On the other hand, if we define g(z) = 2f (21)6’“‘z|2, it follows from the proof
of Theorem 7.1 that f = Py(g). If f € F(‘;’/z, then g € L*(C). Similarly, if f € f;/z’
then g is in Cy(C). This completes the proof of the corollary. O

as k — co. It follows that /7 is compact. By Theorem 7.2, f €
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7.3 Membership in Schatten Classes

Our next goal is to characterize small Hankel operators induced by entire functions
that belong to the Schatten classes S),. As usual, the cases 1 < p <ecand 0 < p <1
require different treatments. More specifically, we use complex interpolation for the
case 1 < p < oo, and we use atomic decomposition for the case 0 < p < 1.

Theorem 7.4. Suppose 1 < p < oo, B = 0./2, and @ is an entire function satisfying
condition (Iy). Then hg is in the Schatten class S, if and only if ¢ € Fg .

Proof. By Theorem 7.1, the mapping F : Fﬁl + Fg' — Sw defined by F(@) = hg is
bounded (and conjugate linear) because Fﬂ1 is continuously contained in FE".
If ¢ € FJ, then it follows from the reproducing formula in Fﬁ2 that

00) = [ () dzg ()

If we write Kg (z) = e for the reproducing kernel in F2, then it follows from
Fubini’s theorem that for polynomials f and g we have

(hgf,8) /f 0(2) dAq(2)
= [Lolwdng(w / F(2)8()KE () dAa(2)
—/(p I 2) dhg ().

In the sense of Banach space valued integrals, we can rewrite the above as
iy = /«: 90) g dag (). (7.3)
It is easy to see that each hKT; is an operator of rank one, so by Theorem 7.1,
2
lrglls, = gl < 2] Dy =2ePM/2,
Therefore, it follows from (7.3) that

Iiglls, <2 [[10nle? 2000 = 22 [ |pamie ¥ | aam)

This shows that /g belongs to the trace-class 1 whenever @ is in F| I On the other
hand, we have already shown in the previous section that Ag is in S.. whenever
Qo c FE" . An application of complex interpolation then shows that, for 1 < p < oo,

the small Hankel operator A is in the Schatten class S, whenever ¢ € F, é? .



276 7 Small Hankel Operators

On the other hand, if the small Hankel operator /g belongs to the Schatten class
Sp, where 1 < p < oo, then according to Proposition 3.5 and its proof, the function

D(2) = (hgk:. k)

isin LP(C,dA), where k, are the normalized reproducing kernels of Fozc. We compute
that

@) = [ PNE(w) daa(w)
_ ok /C 02 g (w)
= e*“‘zlzm.
Obviously, the condition that
e*‘xlz‘zgo(Zz) € LP(C,dA)
is equivalent to the condition that
e P /g(z) € LP(C,dA),

which in turn is equivalent to ¢ € Fé’ . This completes the proof of the theorem. 0O

Note that if ¢ € Fﬁl, we can also use atomic decomposition to prove that the
operator hg is in S1. See the first part of the proof of the next theorem.

Theorem 7.5. Suppose 0 < p < 1, B = /2, and @ is an entire function satisfying
condition (Iy). Then hg is in the Schatten class S, if and only if ¢ € Fé? .

Proof. First, assume that ¢ € F, é’ . By Theorem 2.34, we can write

0(z) = 2 crkPr(z),
k=1
where {c,} € [P and

gu(e) = TRFHRRE g,

We may also assume that the sequence {z} is dense enough to be a sampling
sequence for F, g . Moreover, there is a constant C > 0, independent of ¢, such that

S lexl? < Cligl” 5.
k=1
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It follows that

2 Ck h@

Ihglls, =
"=

p o
< 3 lel? g, 12
s, k=1

Each operator /i35, is a rank-one operator. In fact, if we use K% and KB to denote the
reproducing kernels of F2 and Fg, respectively, then for any f € F2, we have

hg f(2) = P@f) (@) = (@nf K)o
_ oBlul/2 <ng,Kzli >a — e Bl <fo‘angk/a>a
= e Pl 2p(Bz /o) KT Bz /) = £(z/2) Py (2)
— <f,KZ"k‘/2>a¢k(Z)~
Therefore,

53, 1ls, = 1hg Il < 1K pll2.all@kll2.e = 1,

and so
I, < 3l <Cloly 5

On the other hand, if & is in S, we are going to show that @ € Fé’. To this end,
we fix a square lattice Z = {z;} in C such that atomic decomposition holds on Z
for both Fé’ and FOZC. We also assume that 2Z is a sampling sequence for Fé’ .Fix a
sufficiently large R and use Lemma 1.14 to decompose Z = Z; U---UZy into N
square lattices such that for each 1 <k < N and each pair {w;,w,} of distinct points
in Z;, we have |w; —w,| > R.

Fix an orthonormal basis {e; } for F2 and define an operator A on F2 as follows:

A (2 Ckek> (z) = z Ckeazzk*%lulz'
k=1 k=1

By the atomic decomposition for F2, the operator A is bounded and onto. Clearly,
we have A=A +---+ Ay, where

Aj (Z Ck€k> (=Y ceod il
k=1

w€EZj

for 1 < j < N. Each operator A; is also bounded on FO%.
We also consider the companion operators

Bj!Fé-)FO%
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defined by
Bi(f)=A,f, [fEeF:1<j<N.

Since hg is in S, so is the operator T = T; + - - - + Ty, where
T,-:B;‘»haAj, 1<j<N.

Write T = D+ E, where D is diagonal with respect to the basis {e; } and satisfies
(Dey,ex)q = (Tey,ex)q for all k > 1. If we write

- o 2
filz) = e® Tl
then

DS, = Y [(Der,e)|” = 3 [(Tex, )|

=1 =1
= Z hafi, i)l Z’ (2z1)e 7a|zk|2 3
> Clloll? 5.

where C is a positive constant independent of ¢. Note that the last inequality above
follows from the assumption that {2z} is a sampling sequence for Fé’ .
On the other hand, since 0 < p < 1, it follows from Lemma 6.36 that

|\E||s < Y Eewe)|” =Y (Ter.e)|”
ol i

N
2 2 (PAjekame'
i

Since
(haAjek,Ajeﬁ =0

unless both z; and z; are in Z;, we see that
1E[5, < 22{ hfo )P k12 €22 €241

If @ is already in F}, we can write

= ECi(Pi(Z)
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where
0i(z) = Bz lul?
and

> lel? <cllols,

i=1

Here, C is a positive constant independent of ¢. By Holder’s inequality,

IENE, szw’zz{ (g o TPk # L € 2,2 €751

It is easy to see that
|y fior F)ee| = e Bla—(ai/2)P=Bla—(zi/2)*

Therefore,

HE||§1,SZ|Ci|p Y e rPl (ai/2)P=pBler—(zi/2)P

i=1 ek —z1|=R

If 24 is the separation constant for the sequence Z, then by Lemma 2.32, there
exists a positive constant C = C(§, o, p) such that

e PBlla—3P+a-3P] < ¢ / e PP+ P] gA (2)dA (w).
k** 1*75)

If (k,1) # (K',I), then

B(zk—%ﬁ)x (zl—zz 5>ﬁB<zk/—— 5) (@—%,5)20.
Also,
B(zk 223>><B<zl——3> {(z,w)€C2:|z—w|2R—25}.

It follows that there exists a positive constant C, independent of large R, such that

e PBla—(zi/2) P~ pBla—(zi/2)P

|zk—z/|>R

is less than or equal to

C / e PRI A (2) dA (w).
|z—w|>R-268
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The above double integral tends to 0 as R — . This, along with the fact that
V4 < P p P
1o1g, <27 (ITI5, +1IENE, )
shows that we can find a positive constant ¢ such that

ollel,p < lrglls, (7.4)

where ¢ € Fé’ and o is independent of ¢.

The inequality in (7.4) was proved under the assumption that ¢ is already in F, é’ .
The general case then follows from an easy approximation argument. In fact, if ¢
is any entire function such that i is in S, then by Theorem 7.1, @ must be in FE .
We consider the functions @,, 0 < r < 1, defined by ¢,(z) = ¢(rz). Each @, € Fé’ ,
so by (7.4),

ollellpp < lig,lis, < lglls,, 0<r<L.

Let r — 1. We obtain
ollel,p < llhgls, <.

This completes the proof of the theorem. O
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7.4 Finite Rank Small Hankel Operators

In this section, we characterize small Hankel operators on F2> whose range is finite
dimensional. Such operators are called finite rank operators.

We begin with an example. Suppose @(z) = K(a,z) for some point a € C. Then
for any function f € F2, we have

hol(1)2) = P(0f)() = [ K(w.2)K(a,)f (w) dha()
= fl@)K(a.2).

So, in this case, the range of &, is the one-dimensional subspace spanned by the
function z — K(a,z). More generally, if

S
Z) = Ck —K(Q,Z)
& od

for some point a € C and some nonnegative integer N, then

cha k/ K(w,2)K (a,w) f(w) dAar (w)

Zkak )K(a,z)],

which shows that A, is a finite rank operator whose range is spanned by the
following functions of z:

ak

WK(Q,Z), OSkSN

We are going to show that these are essentially all the finite rank small Hankel
operators on FO%. But we first need the following elementary result from algebra.

Lemma 7.6. Letr P(C) denote the ring of all complex polynomials of the variable z.
If J is an ideal in P(C) containing at least one nonzero polynomial, then there
are a finite number of complex numbers ay, 1 < k < N, and for each k, there
exists a nonnegative integer Ny, such that J consists of all polynomials ¢ with
the property that

(p(i)(ak)ZO, 1<k<N,0<i<N;.

Proof. By a well-known fact in abstract algebra (see [146] for example), every ideal
J # (0) of P(C) is generated by a polynomial, that is, there exists a polynomial g
such that J = {pq: p € P(C)}.If ay,--- ,ay are the zeros of ¢, and each zero a; has
multiplicity 1 + N, then J has the desired form. a
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Theorem 7.7. A bounded small Hankel operator has finite rank if and only if it can
be written as hgy, where

N Ny

=y Z cripui(z (7.5)

k=1i=
Here, @4;(z) denotes the function
i
—K(a,z
5 K(@:2)

evaluated at the point a = ay.

Proof. We have already proved that iy has finite rank if @ is given by (7.5).

To prove the other direction, we write the small Hankel operator as hy, where @
is conjugate analytic. If &, has finite rank, then the restriction of /, on P(C) also
has finite rank. Consider the kernel of %, on P(C):

J:{feP(C):hq,(f)zo}.

Itis easy to check that J is an ideal in P(C). In fact, if hy (f) =0, then (¢ f,g) = 0 for
all polynomials g (which are dense in FOZC). If p is any polynomial, then (¢ f,pg) =0
for all polynomials g. This can be rewritten as (¢pf,g) = 0 for all polynomials g,
which shows that 4y (pf) = 0 as well.

By Lemma 7.6, there exist points a; € C, 1 < k < N, and for each k, there exists
a nonnegative integer Ny, such that

J= {feP((C) L () = 0,1 gkgzv,ogigzvk}.
In other words, J is the intersection of the kernels of finitely many linear functionals
on P(C).
Let g = @ € F2. Then the linear functional on P(C) defined by

[ {f:8) = (ho(f), 1)

vanishes on J. Combining this with the conclusion from the previous paragraph, we
can find constants c; such that

N Ny . N N i
8= > cuf(a <f7 > cha 8" >
k=1i=0

for all polynomials f. This shows that

N Ny Pl

2 zckl ak7
da

completing the proof of the theorem. a
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7.5 Notes

Small Hankel operators on the Fock space were first studied in [138], where the
boundedness, compactness, and membership in Schatten classes S, for 1 < p < oo
were characterized. The case when 0 < p < 1 was taken up and settled in [231]. Our
presentation here follows [138] and [231] very closely.
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7.6 Exercises

1.

10.
11.

For a symbol function ¢, define a conjugate linear operator
7.2 2
he 1 Fy — F,

by he(f) = P(¢f). Show that h, is bounded if and only if /g is bounded, / is
compact if and only if /g is compact, and /4, is in the Schatten class S, if and
only if ﬁ? is in the Schatten class S,.

. Suppose ¢ is an entire function. Define a bilinear form

@:F2xF2—~C
by
O(f,g) =(0f,8)a= [Cﬁfgdla.

Show that /g is bounded on F2 if and only if there exists a constant C > 0 such
that |®(£,g)| < C||ll2.allgll2.c for all f and g in F2.

. Formulate conditions for compactness and membership in Schatten classes for

hg on FO% in terms of the bilinear form @ in the previous problem, where ¢ is
any entire function.

. Suppose ¢ € L%X. Show that hy = 0 if and only if ¢ L ITO%.
. Consider the integral transform

%@:@W@M:AMMMM%MW}

Show that &y is bounded if and only if V,, is bounded, iy is compact if and
only if Vy, € Cy(C), and hy belongs to the Schatten class S, if and only if
Ve € LP(C,dA).

. If ¢ is entire, show that

Vi(z) = e % G(22)

forall ze C.

. If @ € LP(C,dAy) for some 1 < p < o, then ¢ satisfies condition (I;). In

particular, every function in FOZC satisfies condition (/}).

. Show that if ¢ satisfies condition (/;) with respect to the weight parameter

B = 3a/4, then P,(¢@) satisfies condition (I;) with respect to the weight
parameter o.

. Show that Theorems 7.1 and 7.2 remain valid with the weaker assumption that

¢ is entire and satisfies condition (I}).
Verify directly that /g has finite rank when ¢ is a polynomial.
Show that ||Ag, [|s, < [|hgl]s, forall 0 <r < 1.






Chapter 8
Hankel Operators

In this chapter, we study (big) Hankel operators H, on the Fock space FOZC.
Problems considered include, again, boundedness, compactness, and membership
in the Schatten classes. There are basically two theories here: one concerns the
simultaneous size estimates for both Hy, and Hyg, and one concerns the size estimates
for the single operator Hy. The former is similar to the situations in the more
classical Hardy and Bergman space settings, while the latter is unique to the Fock
space setting.
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8.1 Boundedness and Compactness

Suppose ¢ € L=(C). We can then define an operator Hy, on F2 by

Hy(f) = (I=P)(ef),
where [ is the identity operator on L%C and
P:L} — F}

is the orthogonal projection. It is obvious that Hy, is a bounded linear operator from
FZ into L%, 6 F2 and ||Hy|| < ||@[|~. We call H, the (big) Hankel operator with
symbol ¢. By the integral representation of the projection P, we have

Hy(f)(z) = ¢(2)f(z) — P(¢f)(2)
_ / W)K (z,w) £ (w) dAg (w)

forall f € F2 and z € C.

Using this integral representation for Hankel operators with bounded symbols,
we can extend the definition of Hy to the case in which ¢ is not necessarily
bounded. In particular, if ¢ satisfies condition (I}), then Hy(f) will always be
defined whenever f is a finite linear combination of reproducing kernels in FO%.
A natural question arises: for which symbol functions ¢ is the Hankel operator H,
bounded?

In this section, we answer the above question when ¢ is real-valued. Equiva-
lently, we characterize those symbol functions ¢ such that both H, and Hg are
bounded. A similar characterization will be given for the simultaneous compactness
of Hy and Hg.

We begin with Hankel operators induced by symbol functions that are Lipschitz
in the Euclidean metric.

Lemma 8.1. [f there exists a positive constant C such that

l9(z) —@(w)| < Clz—w|

for all complex numbers z and w. Then @ satisfies condition (I1) and ||Hy|| <
\2m/oC.

Proof. Tt is easy to check that any Lipschitz function satisfies condition (/1) and
hence induces a well-defined Hankel operator. To estimate the norm of H, consider
the integrals

= [ = wlKG WK 2dha(w),  zeC.
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By a change of variables,

o — a2
I -z _ azwfj\w\ ‘dA
@ =% [le=wle ()

= Ee%ldz/ lz—wle™ 2 dA (w)

= 2 / wle 1 dA (w)

= gkE

o
Thus,
1/2 2n 1/2
|<P WK (z,w)[K (w,w) /= dAa(w) < 4/ —~CK(z,2)

for all z € C. The desired norm estimate then follows from Lemma 2.14 and the
integral representation of the Hankel operator H,. O

Recall that for any a € C, we define a unitary operator U, on L2 by U,f =
f o @ukq, where @,(z) = a — z and k, is the normalized reproducing kernel of F2 at
a.Ttis easy to check that U2 = I, so U} = U, ! = U,. Since U, leaves the Fock space
F? invariant, we have U,P = PU,.

Lemma 8.2. Suppose f satisfies condition (I,). Then the operators Ty and Hy are
both densely defined on FOZC. Moreover, we have

Tsz = UzP(fO (Pz) = P(fo (Pz) ° @k, (8.1
and
kaz = UZ(I_P)(fO (Pz) = [f—P(fo (Pz) © (Pz]kz (8.2)

forall z € C.

Proof. Since each U, commutes with the projection P, we have

Tk, = P(fk;) = PU,(f o @;) = U.P(f o @;).

This proves the desired results. a

Proposition 8.3. Suppose f satisfies condition (I). Then

max { [k |, | Hzko|| } < MO(F)(2) < [Hpke | + || Hke |
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forall z € C, where MO(f) =1/ |/f\|/2 — 7~

Proof. Since each k; is a unit vector, it follows from the Cauchy—Schwarz inequality
that

MO(f)*(2) = IIfk:|* = [(fherko) P
= || fkell® = [(P(fke) o) [
> || fko|* = | P(fk2)]?
= (1= P)(fk)|I* = || Hsk|>

Replacing f by f, we also have MO(f)(z) > ||Hk||. Thus,

MO(1)(2) > max { | Hk|, |1Hzk | }.
On the other hand, it follows from Lemma 8.2 that

[Hpke|| = [|U(I = P)(fo @)l = [|[(I=P)(fo @)
= fop:=P(fop)ll

Similarly, we have

||kazH =foo.=P(fo)ll=fop.—P(fop)].
Since f(z) = P(f o ¢.)(0) and Pg(z) = g(0) whenever g € F2, we have

MO(f)(z) = || fo@:— P(fo @) (0)]
< [fog.—P(fo)ll+IP(fo.) —P(fop:)(0))]
= [|Hsk:|| + |[P(f o @) — P(Fo 9.) (0)]
= ||Hyke]| +[|P[f o 9. — P(Fo .)]|
< |Hpk|l+If o 0.~ P(Fo o)
= ||Hyk|| + | fo @:— P(fo )
= [|Hk]| + | sk .

This completes the proof of the proposition. a

We can now prove the main result of this section.
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Theorem 8.4. Suppose ¢ satisfies condition (I). Then the following two conditions
are equivalent:

1. Both Hy and Hg are bounded on F2.
2. The function ¢ belongs to BMO?.

Proof. First, assume that ¢ € BMO?. Then, by Corollary 3.37, we can write ¢ =
01 + ¢, where the function ¢ satisfies the Lipschitz estimate

01 (2) = @1 (w)] < Clz—w|

and the Toeplitz operator 7|, > is bounded. By Lemma 8.1, the Hankel operator H,

o
is bounded on F2. On the other hand, it follows from the identity

H;;zH(PZ = T‘(lez - T@zT(Pz

and the boundedness of 7|, » that Hy, is also bounded on F2. Therefore, Hy is
bounded. Since BMO? is closed under complex conjugation, the assumption ¢ €
BMO? implies that @ is also in BMO? so that Hg is bounded on Fozc as well.

Next, assume that both H, and Hg are bounded on FOZC. Then, it follows from the

inequality (see Proposition 8.3)
— ~, o112
MO(9)(z) = [I(PI @) =107 < [|Hoke[| + [|Hek|

that the function ¢ is in BMO?. a

A companion result for the simultaneous compactness of Hy, and Hg is the
following:

Theorem 8.5. Suppose @ satisfies condition (I). Then the following two conditions
are equivalent:

1. Both Hy and Hg are compact on FO%.
2. The function @ belongs to VMO?.

Proof. If ¢ € VMO?, then [[@ — ¢ ||gpo2 — O as 7 — oo, where ¢, is ¢ times the
characteristic function of the Euclidean ball B(0,r). It is easy to see that both Hy,
and Hg, are compact on F2. Since

[Hy — Ho, || + [|Hg — Hg, || ~ | — ¢llpmo2,

we conclude that both H, and Hg can be approximated by compact operators in the
norm topology and so must be compact themselves.

Conversely, if H, and Hg are both compact on FO%, then it follows from the second
inequality in Proposition 8.3 that ¢ is in VMO?, as the normalized reproducing
kernels &, tend to 0 weakly in F2. O

Corollary 8.6. If ¢ is entire, then Hg is bounded if and only if ¢ is a linear
polynomial and Hg is compact if and only if ¢ is constant.
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8.2 Compact Hankel Operators with Bounded Symbols

The purpose of this section is to show that for bounded symbol functions ¢, the
Hankel operator H,, is compact on F2 if and only if Hg is compact on F2. This
striking result probably reflects the lack of bounded analytic functions (except the
constants) in the complex plane, as the direct analogs for Hankel operators on the
more classical Hardy and Bergman spaces are false.

Lemma 8.7. If f € L=(C), then |Pf(2)| < ||f|l«e®/* forall z € C.
Proof. This follows directly from Corollary 2.5. O

Lemma 8.8. Suppose F(w,z) is a nonnegative measurable function on C x C with
the property that there is a constant B > 0 such that

2
F(w,z) < Be#ldl zweC. (8.3)
Then there exists another positive constant C such that

[ F o Ie ™ e ah ) < et | [ P ana(o)]

forallw e C.

Proof. We make an obvious change of variables to rewrite the integral on the left-
hand side as

s /«: Flw,u)e 3147 dA(u).

Denote the integral above by I, apply Holder’s inequality with exponents 4 and 4/3,
and use the assumption in (8.3). We obtain

I—/qu 78‘”‘ —¥lP g4 dA(u)

- [/CF (W’”>4e32a'“'2dA(u>F [ / e’é‘lulsz(u)F

<c {% | [C F(w,u)zea"sz(u)} %

—-C |:/CF(W,Z)2d/'La(Z):| )

This proves the desired result. O
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Lemma 8.9. Suppose f € L= (C). For any z € C, we have

LIPC 2 00) (@u 1K 21K 09) dh(o0) < 417K (2)
and

L@ = P @ (@l (1 (00)F da(w) < 617K (2)

Proof. Tt follows from (8.1) that
[P(f o @) (0u(2)||Kw(2)| = [P(fKw)(2)|

[C F () Ko (1)K (2, 1) Ay (1)

< 1l [ 1K)l K 0] 2 (1)
= [1fllef0,

Thus the integral

= /C |P(fo @vv)((pw(z))||eazw+%a‘w‘2|dxa(w)

satisfies the following estimates:

1< Iflle [ H 0 ahg ()
C

(04 o2
= 2| fllwetH /
71 i

= 4 let [
C

= 4]l T = 4] f] et

2 Q|2
e 1" dA(w)

eV

e T

2
dig (w)

This proves the first estimate. The second estimate follows from the triangle
inequality, the first estimate, and the fact that

L IKu(@) K dha() = 2K(0) o

Theorem 8.10. Suppose f € L”(C). Then

(a) Ty is compact if and only if [|P(f o @4)|| = 0 as a — oo.
(b) Hy is compact if and only if || f o @, — P(f o @4)|| = 0 as a — ee.
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Proof. The proof of part (a) is exactly the same as the proof of part (b). The only
difference is in the projection that is used in the definitions of Toeplitz operators and
Hankel operators: Ty = PMy and Hy = (I — P)M. Therefore, we use Q to denote
either P or I — P in the rest of the proof.

Since k, — 0 weakly in F? as a — oo, the compactness of

OM; : Fg — O(Lg)
implies that QM (k,) — 0 in norm as @ — c. By Lemma 8.2,

oMy (k)| = |Q(fo @a)l*,  ae€C.

Thus the compactness of QM implies ||Q(f o @4)|| — 0 as a — oo.
Next, we assume that ||Q(f o @,)|| — 0 as a — e and proceed to show that the
operator QM is compact. Obviously, it is equivalent for us to show that the operator

(OMy)*: Q(L3) — Fy C Ly,

is compact.
Given i € Q(L2,)) and w € C, we use Lemma 8.2 to write

(OMy)"h(w) = ((OMy)"h,Kyy) = (h, OM[K,,)
= (h,0(f o on) 0 9Ky)
- / 1(2)0(F © ) (@w(2) Ko (2) d2a (2).

For each positive number R, define an operator
Sr:O(LE) — L3,
by
Srh(w) = xr(W)(QMy)"h(w), — weC,

where g is the characteristic function of the ball {u € C : |u| < R}.
By Fubini’s theorem and a change of variables,

/;/(;XR(WNQ(JCO ) (@ (2)) 2| Ko (2) > Ay (z)d A (w)

= IW|<RKw(W)HQ(fO o) > dAa(w)

o 2

< aR?| QM2 < .
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It follows that the operator Sg is Hilbert—Schmidt. In particular, Sk is compact.
We write

(M) = Se] g(w) = [ HOn2)s(@) dhale), g€ QULZ),

where

H(w,z) = (1= xr(W))O(f 0 ¢w)(pw(2)) K (2)-

We are going to apply Schur’s test to obtain an estimate on the norm of (QMy)* — Sk.
To this end, we let i(z) = 1/K(z,z). It follows from Lemma 8.9 that

[ 1H O 2)0w) dhe(o0) < 6] 1]h(2)
for all z € C. On the other hand, if we write

F(w,z) = (1= xr(W))|Q(f o ¢)(2)],
then by Lemma 8.7,

F(w,2) <2 fle 1,

so we can apply Lemma 8.8. In fact, since

|H(w,2)| = F (w, (2))| K (2)],

an application of Lemma 8.8 tells us that there exists a positive constant C,
depending on f only, such that

1

/|sz)|h()d?ta()<Ch UFWZ ez )]4

— Ch(w)(1 = 2z(W))[|Q(f o )|

By Schur’s test, there exists a positive constant C such that

l(My)* =Sl < Csup{ | Q(f 0 )|+ : || > R}

This shows that the condition

lim [|Q(f o ¢a)|| =

a—roo
implies that

lim [|(QM;)* — g = 0.
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In other words, (QMy)* can be approximated in norm by compact operators, and so
it must be compact as well. This completes the proof of the theorem. O

Lemma 8.11. For any f € L*(C), there exists a positive constant C such that

1fogu—P(fopa)| <C|lfopa—P(fop.)l

forall a e C.
Proof. Tt follows from Corollary 2.5 that

|Fw) = PFw)]| < 2| fl|e " (8.4)
for all w € C. Since the Berezin transform fixes entire functions, we have
Fw) =P = [ (1) = PF k(D) dAa)

so that

Fon—pfon| <e ™ [11@) -PrQIK P dRal)  B5)
for all w € C. By (8.4),

IF=PrIP = % [1Fow) = PrOw)Pe e aa(w)

< 22 [ 1700 — PrOnle 1 ann)
Using (8.5), Fubini’s theorem, and Corollary 2.5, we arrive at
1F=PAI = 21l 170 =PIt aha(a)
- ﬁnfnm'[c 1@ =PIl 3 e F dao)

Applying Holder’s inequality (with exponents 4 and 4/3) and Lemma 8.7, we obtain

|F~PAI? < il Al [[C /@)~ PA@)fe 3 dA (e ﬂ Z

1

<A [ L@ —Pf(Z)Izd?ta(Z)] 4

3
= G|lfI121lf - P
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This shows that
- 3
If = PFI < CIFIENf =PI,

where the constant C is independent of f. Replacing f by f o ¢, and using the
translation invariance of the Berezin transform, we obtain the desired estimate. O

Lemma 8.12. If f € L*(C) and Hy is compact, then both H 7 and T}L 7 are compact.

Proof. By Theorem 8.10,
lim [|f'© @u — P(f o 0a)|| =0,
a—oo

which, according to Lemma 8.11, implies that
lim HJ?O $a—P(fo@a)|| =0.
a—»oo

Since the projection P is bounded on L%X, we also have

32130||P(J70<Pa) —P(fo@a)|=0.

By part (a) of Theorem 8.10, the Toeplitz operator Tf7 7 is compact. Since

1f o @a—P(fo@a)ll < IIf o 9a—P(f o @a)ll + IP(f 0 9a) = P(F o 9a)ll,

we see that
lim HJ?O @a_P(fo ®a)| =0,
a—»oo
which, in view of part (b) of Theorem 8.10, shows that H 7 is compact. O

Theorem 8.13. Suppose f € L*(C). Then Hy is compact if and only if Hz is
compact.

Proof. Let g = f and assume that H, is compact. By Theorem 8.10,
lim [|go @, — P(go ¢a)|| =0.
a—oo
Combining this with Lemma 8.11, we see that
lim [|g'o @u — P(go ¢a)|| =0,
a—»oo
and so by the triangle inequality,

lim g0 @a—go @] =0.
a—soo
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Since complex conjugation commutes with the Berezin transform, we also have
lim [ © @a— f o gal =0,

which implies that H, ~is compact. Using Lemma 8.12 and iteration, we conclude

that H ¢ fm) is compact for every positive integer m.
On the other hand, Theorem 3.25 shows that f € L~(C) implies

7 (@) — 7 ()] < %u—w

which, along with Lemma 8.1, shows that ||H Fm) || = 0 as m — oo. This, combined
with the fact that each H 5, is compact, shows that H is compact. O
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8.3 Membership in Schatten Classes

In this section, we characterize when the Hankel operators Hy and Hy belong to the
Schatten class S, simultaneously. Throughout the section, we fix a positive radius r
and write

1
2

MO, (@) = [IFP, (&)~ 7P

and

1
2

MO(f)(2) = [IfP @) -~ 17

Lemma 8.14. Let2 < p < o. If Hy and Hp are both in the Schatten class Sp, then
MO(f) € LP(C,dA).

Proof. If Hy is in S, then (Hf*Hf)”/2 is in the trace class Sy, so by Proposition 3.3,

/(C<(H;Hf)p/2kzvkz>dA(Z) < oo,
where k; are the normalized reproducing kernels of FO%. By Lemma 3.4,

@@wammmw<%
or

[k 744 e) < .

Similarly, if H7 isin S,, then

LIz 7 d(z) < .

The desired result then follows from Proposition 8.3. a

Lemma 8.15. Let 0 < p <2. If MO(f) € LP(C,dA), then both Hy and Hy are in
the Schatten class S).

Proof. By Proposition 8.3, the condition MO(f) € L?(C,dA) implies that the func-
tion z — ||Hyk|| is in L?(C,dA). This, along with Proposition 3.3 and Lemma 3.4,
shows that

w ()] = [ ()P k) dA)
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IN

o
= [ (H}Hyk, k,)P/* dA
= [ ) Raa)
= 2 [ k7 aa(e) <

m Jc ‘

Therefore, Hy € S,,. Since the condition MO(f) € LP(C,dA) is closed under
complex conjugation, we also have Hy € S),. O

Lemma 8.16. Suppose 2 < p < coand T is the integral operator defined by

_ /C Gz, w)K (2, w) £ () dAe (W),

where G is a measurable function on C x C and K(z,w) is the reproducing kernel
of FOZ{. If

[C /«: 1G (2, w) [P K (2, w) > dAer(2) g () < oo,

then T is in the Schatten class S, of L?,.

Proof. The case p = 2 follows from the classical characterization of Hilbert—
Schmidt integral operators on L? spaces; see [113]. If G € L*(C x C), then T is
dominated by the bounded operator Q, considered in Sect.2.2, so the operator
T is bounded on L2 as well. The case 2 < p < oo then follows from complex
interpolation. O

Lemma 8.17. Let 1 < p < oo, There exists a positive constant C = C,, such that

Li@-Forad <c [ FE pon@r aue  so)

forall f.

Proof. Recall from the proof of Theorem 3.35 that there exists a positive constant
C = C(a) such that

T

< CMO(f)(tz/z])

forallz >0 and z € C—{0}. Thus,

70)— 7(0)] = | [ Fepiay s

<c [ Mot z/leh o

— Cl /0 MO (12 dr.
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Since p > 1, an application of Holder’s inequality gives
~ ~ 1
[f(2) =F(0))" < C”IZI”/ MO(f)"(tz)dt.
0

This, along with Fubini’s theorem, shows that the integral

1= [ 1)~ FO) aia:)

satisfies

r<e [ [ Moy
= [La [ 1Motz anate)
= [Ca [ ape oy aa
= [1 2 [ e o () aace)
= [ @Oy @A) [ 1 CHre I g
= [rMo(y @ aae) [ e a
_ c’/(c]‘%dfx(z)/:ﬂewz dr,

where C' = Ca /7. By L’Hopital’s rule,
/wtf’cf"“2 dr
e .
|z]—eo |Z|P71e70“1|2 200

It follows that there exists another constant C > 0, independent of z, such that
i 2 2
/ Pe % dr < C (14 7P~ ) e
|zl

for all z € C. This proves the desired estimate. O

Lemma 8.18. Suppose 2 < p < oo and MO(f) € LF(C,dA). Then both Hy and Hy
are in the Schatten class S. '
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Proof. First, consider the integral

1= [ 176 = FOu) 71K () ah(2) a0,

By Fubini’s theorem and the change of variables formula, we have

~
I

2 4@ [[17@) = Fon k(0 dhao)

= %/CdA(Z)/CIf(Z)—f(z—w)|Pd)La(w)

where ¢@,(w) = z—w. By Lemma 8.17 and the invariance of the Berezin transform
under the action of ¢, there exists a positive constant C, independent of f, such that

1< [ A [ owMO(fo 0 (w)da(w)
=€ [ 4AQ) [ @(r)IMOU) (9:(0)) dAa(w).

where @(w) = (1 +|w|?~1)/|w|. Changing variables again and applying Fubini’s
theorem, we obtain

1< [ aAG) [ o(p(m)MOU) (w)lk () d2a(w)
= C'/(CMO(f)p(w)dA(w) /C¢(¢Z(W))|kw(z)|2d)ta(z)

= € [ MOy () aAW) [ p(u)dra(w)

It is clear that the integral

/(p ) g /”'Z'p e da(z)

Iz|

converges. It follows that / < oo, and by Lemma 8.16, the Hankel operator Hf
belongs to ).

Next, we consider the function g = f — f By the triangle inequality,

6] = [ [ 170~ Fow Pl ahat]
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< | L1700 = F Pkt ahat)|

1

[/ 76) = Fon Pl arao)|

g [ /C FoR0) = TSP atan)|

By assumption, the first term above is in L”(C,dA). The second term is also in
LP(C,dA). In fact, since p > 2, an application of Holder’s inequality gives

/(; [[C |Fop:(w) —mz(O)Fd)La(w)} : dA(2)

< [4AQ) [[1700.00) ~Fo .0} d2a(w)
<C [ MO(7)"(w)dA ().

The last inequality above was proved in the previous paragraph. We conclude that

the function /|g|? belongs to L”(C,dA). In other words, the function |g|? belongs to
L/ 2(C,dA). By Corollary 6.33, the Toeplitz operator Ty belongs to the Schatten
class S, . Since

Kry
HyHg =Tjpp — TgTy < Tjgp,

the operator Hy H, belongs to the Schatten class S, />. This shows that H, belongs
to S,, and consequently, Hy = Hz+H, 7 belongs to §),. The condition MO(f) €

LP(C,dA) is closed under complex conjugation, so we must have H; €S as well.
O

Recall that Z denotes the additive integer group and
={n+im:n,meZ}

is the lattice of integers in the complex plane. Throughout this section, we fix a
positive integer N and consider the finer lattice

| .
—7% = n+1m:n,m€Z .
N N

We also consider the following two special squares in the complex plane:

1 1
SN_{x+iy:0§x<ﬁ,0§y< N},
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and

(0 +i 1< <2 1< <2
=<xtiy: ——=<x< —,—— — 5.
N VONETSN NS SN

If f is a Lebesgue measurable function on the complex plane, we write
) = [ [ 1) = )P dae).
On JOn

If E is a measurable set in C with 0 < A(E) < o and f is integrable on E, we use

1
fE:m/EfdA

to denote the average (mean) of f over the set E.

Lemma 8.19. Suppose f is locally square integrable and v € 7* /N. Then

4N4|7(V)|)

/Slfotv—fleszS<N2+ S Y aw(feta),

acy(v)

where t,(z) = z+a is the translation by a and y(V) is the canonical path in 7Z* /N
Jrom v to 0 (see Sect. 1.2).

Proof. The case v = 0 is trivial. If v # 0, we write

’)/(V) = {ao,al,...,al}

in the order in which y(v) is defined, where [ 4+ 1 = |y(v)]| is the length of the path
y(v). It is clear that

(Sny+aj-1)U(Sy+aj) COv+aj i, 1<j<l
We will estimate the integral
1= [ 1fon g, faa
using the elementary inequality
o+ -+ zl? < k(P + -+ |zl)

along with several natural “telescoping” decompositions.
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We begin with the estimate
I= [ Ufoty = (Fotu)s,Pda
Sn
<2 [ [l oty = (Fota)syP+1(Fotu)sy = (Fotup)syl] dA.
N
It is easy to see that

2/ |fotll1 _(fOtaz)SledA
Sn

1
N A(SN) /SN Sy |f0tal(u) _fotaz(v)|2dA(u)dA(v)
<N Jy(foty).

On the other hand,

2 [ 1(Fota)s, — (Foti)syl* A

DN X
gzlj; /SNI(f ta)sy — (f Oty )sy|>dA

<412/ fOfaJ (fota, I)QN|2

+ |(fotllj—1>QN - (fotaj—l)Sle dA.

Thus the quantity
|(f°ta,) (fota, l)QN'

can be estimated as follows:

2

1)/ [fota; — (fotllj—l>QN]dA

“ [

SNz/ |f_(fotaj71)QN|2dA
Sn+aj
< NZ/ |f_(fotaj,1>QN|2dA
On+aj—q
= Nz/ |fotllj—1 - (fotaj—l)QledA
JON

4
= T h(Foty, ).
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Similarly,

|(fotflj 1) (fota, I)SN| < IIV_SJN(fOtajfl)-

Therefore,

41N4

!
2/ [(fota)sy — (fotay)sy|?dA < —— Z (fota,,)

This proves the desired result. O

Lemma 8.20. Suppose f satisfies condition (I). There exists a positive constant
C = Cy (depending on N) such that

sup MO(f c >y Y eV BIn(foty).

€SN VGZZ/NGEY )

Proof. For any constant ¢, we have
JLlrot=cPdha = [7P() () — (o) + e
= /P~ 7P +17()
> |£@) - 7@
Thus, for any z € C, we have

MO(f)*(z) < /(C fot.— fs, P dAe

-3 /S'N+v+z|f(w+z>—fsN|2daa<w>

veZ?/N
_«a 2 7Ot|wfz|2dA
=2 [ 1 fyle ()
veZ2/N Sn+v
¢y / If oty(w) — fs, [Pe 4 =YF dA(w).
veZz/N

For w and z in Sy, we have
w—z+V[* > [V +|w—z*—2lw—z||v|
> v[/2—|w—z

> |v[}/2-N"2%
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It follows from this and Lemma 8.19 that

MO(fP () < S 3 81 [ fon—fs,fda
T veZ2/N Sy
a o _apyp2 AN*y(v)|
< Zan2 vl LN VAL .
< eV 22‘ e 2 [N + 9 Y, In(fota)
veZ2/N acy(v)

Since the length of y(v) is comparable to | v/, it is clear that we can find a constant
C = Cy such that

“ 4
%eNi2 {NZ—F Vi)l |9Y(v)|] e 5V < cye §IVP

for all v. This proves the desired result. O

Lemma 8.21. Suppose f satisfies condition (). If 0 < p <2, then there exists a
positive constant C = Cy, depending on N and p but not on f, such that

Lmon@)rraa@ <cy ¥ bwiron)?.

beZ?/N

Proof. Let us consider the integral

1= [ M0(nE)” dAG).
It is clear that
ZZ
C= S UE — 5,
U { Ntu:u N }
and this is a disjoint union. It follows that

=y /S+ MO()(2))? dA ()

uGZZ/N
1
= N2 Y, sup{MO(f)"(z):z€Sn+u}
uez? /N
1
N Y, sup{MO(f)P(u+z):z€ Sy}
uc’z? /N

= ]% 2 sup{MO(fot,)P(z) :z€ Sn}.
ueZ?/N
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Since 0 < p < 2, it follows from Lemma 8.20 and Holder’s inequality that

S

sup MO(f ot,)P(z) <Cn 2 2 e M [In(fot,ot,)]
ZESN veZ2 /Nacy(v)

Since t, 0t, = t, 4, We have

D D M LT

ueZz/N veZ?/Nacy(v)

NS e WYY n(fotua)?

veZz/N acy(v)ueZ?/N

:% S ly(v)le= 5 M Y, Un(fon)]

veZ?/N beZ?/N

14
2

where |y(v)| is the length of the path y(v). Again, since |y(v)]| is comparable to |v/|,

the series
> e v
veZ2/N
converges. This proves the desired estimate. O

Lemma 8.22. There exist a positive integer N and a positive constant Cy such that

1
IV(f) Z CN‘]N(fOtV)v Ve Nsz

Jor all locally square integrable f, where I, (f) denotes the integral

2
[ (@) = pomer S m @) qa )| e~ dA ().
ON+V

-/QN+V .

Proof. We can write I, (f) as

/QN+V

which, after a simultaneous change of variables and some simplifications, becomes

A

2
dA(2),

= e S e g

2
dA(z).

/ (foty(z) — foty(w))e % lz—w|*+iodm (z) dA(w)
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Fix any 6 € (0,1/4) and choose a positive integer N such that

7g _ 2 . —
e Z|ze—w|*+iodm (zw) _ 1_|-yz,w, |'yZ-,W| < 57

for all (z,w) € Oy x On. To compress the expressions below, we write ¥ = %,,.
Then, for any z € Qn, we deduce from the triangle inequality that the quantity

2

\/{;Nvorv(z) ~Foty)(1+7)dA

is greater than or equal to

I

H/QN(fotv(Z) —fotv)dA‘ - "/QN(fo;v(z) — foty)ydA

which is greater than or equal to

2

’/QN(fotv(Z) ~for)dA

minus

2‘/QN(fotv(z) _fotv)dA‘ ‘/QN(fotv(z) —fotv)ydA',

which is greater than or equal to

2

[ et sreman <23 [ tronto—roniua]”

It follows that

L(f) = '/QN

s [/Q Vrerta —fotv(W)IdA(W)r aA(z).

2
dA(z)

|, (renta) = for(w)datw)

The first integral above can be written as [9/(2N?)]Jy(f oty), and according to
the Cauchy—Schwarz inequality, the second integral above is less than or equal to
(9/N?)Jy(f oty). We conclude that

L(f) > 32 (% —25> Iv(foty).

This completes the proof of the lemma. a
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In the remainder of this section, we fix a positive integer N such that Lemma 8.22
holds. We will need to decompose the lattice Z? /N into more sparse sublattices. To
this end, we fix another positive integer M whose magnitude will be specified later.
For any j = (ji, j2), where each j; € {1,2,...,M}, we let

Vi v .
AY = {v: (ﬁl,ﬁz) Vi = jr mod M,k = 1,2}.

It is clear that
/R
~ = U Al
Jtja=1
the sublattices AZJ‘-’I are disjoint, and the distance between any two points in the same
A’}’[ is at least M /N.

Lemma 8.23. Suppose 0 < p < oo and f satisfies condition (I,). Then the Hankel
operators Hy and Hz both belong to the Schatten class S, if and only if the
commutator [My, Pl = MyP — PM; belongs to the Schatten class S,.

Proof. It is easy to see that

My, P) = [My,P|P+ [Myg,P|(I—P) :Hf—H%.

So the simultaneous membership of Hy and Hy in S, implies that [M,P] is in S),.
To prove the other direction, note that

[My,P|P = (M¢P—PMs)P =M¢P—PM¢P = (I —P)MP.

So the Hankel operator H : F2 — 2, is just the restriction of [M +,P] on the space
F2. 1t follows that the membership of [M,P] in S, implies the membership of Hy
in S,. But the condition [M, P] € S, implies [M7,P] € Sp, so [My,P] € S, implies
that both Hy and Hy are in S,. O

Lemma 8.24. For any 2 < p < o, there exists a positive constant C (depending on
N but independent of f) such that

1My, Plls, <C 3 In(foty)’?
veZ2/N
forall f € L} ,(C,dA).
Proof. If f € L2 _(C,dA), then

local

My My, PIMy, €S, CS,, 2<p <o
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Here E is any bounded Borel set in C. Therefore, it suffices to show that there exists
a positive constant C, independent of f and E, such that

1My My PIMy IS <C %, In(fon)”? (8.7)
MGZZ/N

for all bounded E and f € L} _,(C,dA).
Fix a bounded Borel set E and 1et F be any finite set in Z? such that

Ec|J(Sn+u) = E.

uckF

Since [[STS|[s, < [[S||[|T s, ||S]| for all bounded operators S and all T € S, and since
My My = My, it suffices to estimate the S, norm of the operator:

Z MXS +M[Mf’ st +u! = Z Yv’
uu' €F veZ?/N

where

2 ZFXF(M7 u + V)MXSN+I4 [Mf7P]MXSN+u+V :
ueZ?/N

For any given v € Z? /N, the family
{XSNthH»vf f € Lz uec Zz/N}

of subspaces are pairwise orthogonal in L. Since ||T |5, < ||T||s, when p > 2, we
have

VS, = 2 xrxr(uutv) My [Mp Py S
uez?/N

< Y My, My PIMyg LS, (8.8)
uez?/N

Since [My, P has (f(z) — f(w))e®®" as its kernel function, we have
HMXSNJru [Mf7P]MXSN+u+v |‘§2

— [ U@ = )Pl dhl2) da ()
N+u J Sy+u+v

= g ? — flw efot|sz|2 W

_<n) /sN+u/sN+u+v|f(Z) fw)P? 1A(2) dA(w)

_3(v)/ / |f otu(z) — fotu(w)[>dA(z) dA(w), (8.9)
Sy JSy+v



314 8 Hankel Operators
where 1, is the translation by u and

S(v)=exp|—o inf |[(w—z)+v||.

w,zESN

It follows from the inequalities
| =2) +v* > [V o+ w2 = 2w 2] ]v] > %IVI2 —|w—zf?
that there exists a positive constant B such that
S(v)<Be M yeZ?N.

Because A(Sy) = 1/N?, we have for any g € L2 ., (C,dA) that

/SN /SW g(w)[* dA(2)dA(w)

<2f / [8(2) = g5+ las — gon(0)] dA()4Aw)
N
*—/ g —gs |2dA+£/ lgot, —gsy|*dA
N2 Sy N N2 Sy v N
It follows from the identity

1
2 2 2
Q(SN) Sy |g gQN| Q(SN) Sy |g gSN| |gSN gQN|

that
' 2 ' 2 1
lg —gsy|"dA < [ |g—goy|7dA < EJN(g)'
SN SN

Applying Lemma 8.19 to the integral

/ |gotv_gSN|2dA7
JSy

we obtain

/; /S |8(z) — g(w)|*dA(z) dA(w)
N N+V

< gen(e)+ (M4 N1 ) 3 ntgon)

— 2
N aC )

< (N2—|— ! + — N4|)/ ) z In(goty),
agy(v)
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where y(v) is the discrete path in Z? /N from 0 to v (see Sect. 1.2). Let g = f o, in
the above estimate and use (8.9). We see that

HMXSNJru [Mf’P]MXSN+u+v ng
is less than or equal to
_a v2 1 4
Be§ (N2 bt §N4|y(v)|) 3, Ifonor)
acy(v

Since p/2 > 1, it follows from Holder’s inequality that

P
HMXSN+u [Mf7P]MxSN+u+V ||§2 S h(V) Z [‘]N(fotll Ota)] 2 )
acy(v)

where

p,p=2
2t

0,2 % 2 1 4 4
hv) = |Be= ] 7 N 45+ SNy )
Combining this with (8.8), we obtain

%5 <h(v) Y X Un(Fotow)?

uc’z? /N acy(v)

=h(v) Y Y Un(fon)?. (8.10)

uez? /N bey(v)+u
For any b € Z* /N, we have b € y(v) +u if and only if —u € y(v) — b. Thus,
{ueZ?/N:bey(v)+u}|=|y(v)=b| = [y(v)| < 1+|y(v)|.

Therefore,

Y Y Un(fon)t

uez? /N bey(v)+u

= 3 Un(for))f [{ucZ2/N:bey(v)+u}]
beZ?/N

=1+l Y Un(fom)t.

beZ?/N

A substitution of this in (8.10) gives us

I%0E <A@+ Y Un(fom).
beZ?/N
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Consequently,

IYlls, < > I%ls,
VGZZ/N

<=

< 3 A+ | Y Un(fon)!

veZ2/N beZ?/N

From Lemma 1.12, the definition of A(v), and the elementary inequality |y(v)| <
2|v|, we see that the constant

c=Y [hyA+lyw)]r

veZ2 /N
is finite. With this constant C, the inequality in (8.7) holds for any bounded Borel
set E C C. O

Lemma 8.25. Suppose 0 < p < 2 and f satisfies condition (I). If both Hy and
Hy are in the Schatten class Sp, then MO(f) € LP(C,dA). Moreover; there exists a
positive constant C, independent of f, such that

Lot @17 aa) <[5, + 115, ]

Proof. For any
j=01,J)€e{1,2,.... M} x{1,2,... .M},

we fix an orthonormal basis {e, : v € A.I/"/[ } for L2 and define two sequences {hy}
and {{,} in L2 as follows:

hy (W) _ ea|W|2/Ze—aiIm(vW)xQN+v (W), ve AI]\I’

and

_ Xoy+v(2)[My, Plhv(2)

&) = o e 7 Bl

veA%

We also define two operators A; and B; on L2, as follows:

Ajey=Cy,  Bjey =hy, veal
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It is easy to check that both A; and B; extend to bounded linear operators on L%X.
In fact, since each h, is supported on Qy + v and different Qn + v are disjoint, we
have

2 2
Bj 2 Cyé€y :/ 2 thv(w) dxa(w)
veA’jV C veA’jV
= T ol [ P
veAﬂ.” On+v

I
™M
B

—

E
=
=

This shows that ||B;|| < (3y/a)/(N+/7). A similar argument shows that ||A || < 1.
Let W; = A} [My,P|B; for each j. Then,

IWills, < 114[I1{z, Plls, | Bl

Since there are M? such J’s, we obtain

)4
SIwilz < a2 (2% gl
ills, = NV T* frs,
J

6 [o\”
< (5 2) (118, + )

Here, we used the first identity in the proof of Lemma 8.23 and the fact that, for any
positive p and any Schatten class operators S and 7, we always have

IS+, <27(ISlls, + 171§, )- 8.11)

Fix a very large natural number R and consider the truncation Z of the lattice
7*/N:
Zr={v=(vi,v2) €Z*/N: |v{| <Rk =1,2}.

For any j, we set Z; = Zg N Aj}’l and denote by Pz; the orthogonal projection from
L2 onto the subspace spanned by {ey : v € Z;}. It is clear that

PZjVVjPng: z <gvev><ijeV7eV/>eV/'

vV EZ;
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We are going to decompose Pz;W;Pz; into a “diagonal” part and an “off-diagonal”
part. More specifically, we define an operator D; by

Djg = Z <gaev><WjeV7ev>ev
VEZj

and set

Ej = P;,W;Pz, —D,;.

Both D; and E; are finite rank operators, so they both belong to the Schatten class
Sp. Also, it follows from (8.11) that

22\Will§, = 2°11Pz, WPz |5, > D15, — 27 IEjIs, -
Since D; is diagonal, we have

DI, = X 1A} (M. PlBjey.ev)|”

VEZj

Y lxox+vMy, Plhy|”

VEZj

AS]

g 2
=) [/ |(MfP— PM)hy|*dAq | -
vez; L/On+v '

Note that
(MgP —PMy)hy(z) = f(2)Phy(z) — P(fhv)(2)

- [C (F(2) = F(w))e hy (1) d ()

_ Q (f(Z) _f(w))eazwf%\wﬁfailm(vw) dA(W)
T Jon+v

An application of Lemma 8.22 then produces a positive constant Cy such that

||Dj|\§p >Cy Y, [JN(fotv)]g.

VGZ]'

Next, we will obtain an upper bound for ||Ej][s,, which is much more involved
than the previous estimates. We begin with the following well-known fact from
operator theory: if 0 < p <2 and T is a compact operator on a separable Hilbert
space H, then

ITIZ < 3 |(Tewen)?
n,m
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for any orthonormal basis {e, } of H. See Lemma 6.36. Thus,

IEIS, < X KEjev.ev)|”

v,v’eAﬂV
= Y UEjeven|’
v.v'ezZ; v#v!
_ <[M 7P]hV7ZQN+V’[Mf7P]hV’> g
VVIEZj VAV HZQNJFV' [Mf?P]hv’ ||
_ <XQN+V’[MfaP]hv»XQN+v' [Mfap]hv’> r
vVeZ; v#V |‘XQN+V,[Mf"P]hV'H
< X llxoyivMs Pl
vV EZ; vEV
Write || xg,+v/ [My,Plhy||? as
P
e 2 )
V [ (@)= e S eimm g daa@]
JON+V' |JON+V

and apply the Cauchy—Schwarz inequality in the inner integral. We see that ||E j||§p
is less than or equal to [(3¢t)/(N7)]? times

S

S L L - P @ aaman)

vV EZ; vEV
It is easy to see that

1
|Z—W| > ]T/(M—?))

whenever z € Oy + V' and w € Qy + v (without loss of generality, we may assume
that M > 3). Thus ||E J'ng is less than or equal to the constant

3a]? _pem-3\2
_ez(N)
Nrm

times the infinite sum

> [/QNJrv' /QN+V 1f(2) —f(w)|2e*%|Z*W|2dA(W)dA(Z) 5

v.v'ezZ; v#v
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Making the simultaneous change of variables
z»—)z—i—v/7 W W+ V,
and estimating the resulting exponential function with the help of the triangle
inequality, we obtain a positive constant Cy such that
_pa(M=3)2 _pefv_v'2 2
IEj[5, < Cwe PO S e [1(v,v)]?,
vV EeZ v#V

where

1) =[] IFere(e— for(wPdA(m) dA).

We enumerate the points in the path y(V',v) C Zg as {ao,...,a;} in such a way
thatag = V', a; = v, and

(Snv+ak—1)U(Sy+ar) COn+ag_1, 1<k<I,
where [ + 1 is the length of the path y(v',v). By the triangle inequality,

[foty(z) = forv(w)| < |foty(z) = (fotv)oyl

H(fotv)oy = fotv(w)l
/

+ 2 |(fotak—1)QN - (fotak)QN|'

k=1

By Cauchy-Schwarz, the integrand |f ot,/(z) — f oty (w)|? in I(v, V') is less than or
equal to (/+2) times

|foty(z)— (fotv’>QN|2+|(f°tV)QN —fotv(w)|2
l
+ 2 |(f0tak—l)QN - (fotak)QN|2'

k=1

Therefore, if we also assume N > 3, the double integral I(v, V') is less than or equal
to 9(1 +2)/N? times

|, et~ (fono,PaAG)

+ /Q I otulw) — (foro, FaA()
l

+ z |(f0tak—l)QN - (fotak)QN|2'

k=1
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Since 0 < p/2 < 1, I(v,Vv')?/? is less than or equal to [9(I +2)/N?]P/? times

)4
2
[/ |f0lv/_(fotv/)QN|2dA] (8.12)
JON
+V |fotv_(fotv)QN|2dA}2 (8.13)
JON
/ 2
Z (foty o —(fotak>QN|2] : (8.14)

It follows that ||E J'ng is less than or equal to

Cve B (472’ (9(1+2>>g

N2

times

14

o ! 2
z e7§|V —v[? |:/Q |fotv/—(f0tv/)QN|2dA:| (8.15)

vv'ezZj v#v

P
O I el TSRS P Y] LY
JOn

vV EZ; vEV

P

2

+ Z e~ 4 —v|? [Z| fotak | (fotak)QN| ] . (8.17)

v VEZ; VAV

Since  is comparable to |V’ — v|, we can find another constant Cy such that

po

O(1+ 1)/N}2e 5V < cye 5 IV-VE,

So the quantity in (8.15) is dominated by (up to a multiplicative constant that only
depends on N)

14
332 ‘ )
e (") 2 e flv-vIE |:/Q |[foty = (fotu)oyl?dA|
N

v.V'EeZ; v#EV

which is equal to
o [ M—3\2 p
Cepr(T?’) E [JN(fOtv’)]lj R

! .
v'ez;
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where

N2 % pa /12
(%) g

VGZ]'

S et

IN
7N
—
=%
~_
SIS

veZ2/N
P
N4
- (X)) 3 e
18 veZ?/N

By symmetry, we get exactly the same estimate for the quantity in (8.16).
Since 0 < p/2 < 1, we can apply Holder’s inequality in (8.17) and reduce our
estimate to the following quantity:

_pa(M-3)2 L ey
si=e TR 3 Y e TP (foty oy — (Fota oyl
vV EZ; v#EV k=1

Just like the computation we performed in the proof of Lemma 8.19, we have

|(fotak—l)QN_(fOtak)QN|p = |fQN+ak—l _fQN+ak|p
S 2]7 |:|fQN+ak,| _fSN+ak|p+ |fSN+llk _fQN+ak|p]

p

< O [(Unrota ) + (n(rom)) ).

Thus,
_Poyy, 2 P
SjSCN 2 § 5 V=Vl 2 [JN(fOtM)]z

v.v'ezZ; v#v ucy(v,v')

=Cy Z e,%w,\/ﬁ 2 [JN(fotu)]%Xy(v,v’)(”)

vV EZ; vEV ucz;

—cy Y Un(for))t X e TP ().

uez; v.V'ezZ; v#v!
By Lemma 1.15, there exists a constant C > 0, independent of u# and R, such that
Py 2
z e 6 v=v Zy(v,v’)(”) <C
vv'ezZ; v#V

for all u € Z. Therefore,

o 332
IEj 5, < Cne™ 5 R Y Uw(Fon)]?

MEZj
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for all j, where Cy is yet another constant that depends on N only. Combining this
with the earlier lower estimate for || D;||s,, we see that there exist two constants o

and C,%,, which are both independent of M and R, such that

po

215, + 185, > |- Che %1

eay? S Un(for)]?.

MEZj

If we pick M such that
o —3\2
¢l —mre (%) >0,
then we obtain a constant C > 0, independent of f and R, such that

P
NS, + 1 HEllS, > C Y Un(fon)]
MGZ]'

for all j € {1,2,...,M} x {1,2,...,M}. Summing over all such j, we obtain a
constant C > 0, independent of the truncating constant R, such that

P
V75, + 1H75, > € Y n(F o) ¥

UEZR

Let R — . We obtain

14
1 + 181 >C S, bv(Fon)lt.
uez? /N

This, along with Lemma 8.21, completes the proof of Lemma 8.26. O

Theorem 8.26. Suppose 0 < p < oo, r >0, N is any positive integer, and f satisfies
condition (I). Then the following conditions are equivalent:

(a) The operators Hy and Hy both belong to the Schatten class S),.
(b) The function '

MO(f)(2) = (IfP(2) - |7 (2) ]2

is in LP(C,dA).
(c) The function

MO, (f)(2) = [[fP2,(2) — | /()]

isin LP(C,dA).
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(d) The sequence
{[JN(fotv)]% ve 22/N}
belongs to IP.

Proof. That (a) implies (b) follows from Lemmas 8.14 and 8.25. Lemmas 8.15 and
8.18 show that condition (b) implies (a). So (a) and (b) are equivalent.

By the double integral representations for MO(f) and MO, (f), it is easy for us
to find a positive constant C = C(et, r) such that

MOr(f)(Z) SCMO(f)(Z)a ZEC»

which shows that (b) implies (c).
To show that (c) implies (d), we fix any positive r and choose a sufficiently large
positive integer N such that

Ov+VvCB(,r), veZ?/N,{ecSy+v. (8.18)

This is possible because of the triangle inequality for the Euclidean metric.
Consider the function:

[// F()[PdA () dA(v) g

Since MO, (f) and F, differ only by a multiplicative constant, condition (c) implies
that F, € LP(C,dA).
Let

= /CFr(Z)pdA(z).

Since the complex plane is the disjoint union of Sy + v, v € Z? /N, it follows from
the mean value theorem and (8.18) that

I= ve%/N/SN+VFr(z)pdA(z) B ]% ve%/NFr(CV)p
3 o o - sorssons]
ve 2/N vor) vr)
veZZ/N [/QNJrv /QN+v )|2dA(u)dA(V)} 7

A% Y Un(for)?

veZ2/N
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Thus, condition (c) implies (d).

When 0 < p <2, Lemma 8.21 shows that condition (d) implies (b). When 2 <
p < oo, Lemmas 8.23 and 8.24 show that condition (d) implies (a). Since (a) and (b)
are already equivalent, we see that condition (d) implies (a) for all 0 < p < co. This
completes the proof of the theorem. O
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8.4 Notes

The study of Hankel operators on the Fock space goes back to [28] at least, where the
compactness was studied for Hankel operators induced by bounded symbols. This
compactness problem is equivalent to the symbol calculus for Toeplitz operators
with bounded symbols modulo compact operators.

The introduction of BMO (and VMO) defined with a fixed radius into the study
of Hankel and Toeplitz operators was first made in [257] in the context of Bergman
spaces in the unit disk. The extension to Fock spaces was first carried out in [32].

One of the unique features of the Fock space theory is the following: when f is
bounded, the Hankel operator H is compact on FOZC if and only if Hj is compact. This
result is due to Berger and Coburn [28,29], and it is not true for Hankel operators on
the Bergman space or the Hardy space. A partial explanation for this difference is
probably the lack of bounded analytic or harmonic functions on the entire complex
plane.

The material in Sect. 8.3 concerning membership of the Hankel operators Hy in
Schatten classes is mostly from [131,242]. Again, there is a key difference between
the Fock and Bergman theories. In the Bergman space setting, there is a cutoff point
when the invariant mean oscillation MO(f) is used to describe the membership of
Hpy and Hz in S, while in the Fock space setting, this cutoff point disappears because

of the exponential decay of the Fock kernel ek,



328 8 Hankel Operators



8.5 Exercises 329
8.5 Exercises

1. Show that on the space F2, we have W, = e’v for any a € C, where y(z) =
2Im (az).

2. Show that Hy and H both belong to the Schatten S, if and only if the sequence
{MO,(f)(v):v €Z?*/N} belongsto I”, where r >0 and N is any positive integer.

3. For f € L™(C), show that Hy is Hilbert-Schmidt if and only if Hy is Hilbert—
Schmidt. See [12].

4. Show that Theorems 8.4 and 8.5 remain valid with the weaker assumption that
ol

5. Show that HyHp = Tj2 — TgT,.

6. If || fk.||> < C as for all z € C, show that H; and Hy are both bounded. Similarly,
if || fk:|| — 0 as z — e, then Hy and Hy are both compact.

7. Show that |£(z) — Pf(z)| < 2||f]l~e %" for almost all z € C and f € L=(C).
8. Define and study Hankel operators on the Fock space F§ when 1 < p < o,
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